Computer Graphics

- Volume Rendering -

Pascal Grittmann Philipp Slusallek

Overview

- So far:
 - Light interactions with surfaces
 - Assume vacuum in and around objects
- This lecture:
 - Participating media
 - How to represent volumetric data
 - How to compute volumetric lighting effects
 - How to implement a very basic volume renderer

source: Studio Lernert & Sander

Fundamentals

Volumetric Effects

- Light interacts not only with surfaces but everywhere inside!
- Volumes scatter, emit, or absorb light

http://coclouds.com

http://wikipedia.org

http://commons.wikimedia.org

Approximation: Model Particle Density

- Modeling individual particles of a volume is, of course, not practical
- Instead, represent statistically using the average density
- (Same idea as, e.g., microfacet BSDFs)

Volume Representation

- Many possibilities (particles, voxel octrees, procedural,...)
- A common approach: Scene objects can "contain" a volume

Volume Representation

Homogeneous:

- Constant density
- Constant absorption, scattering, emission,
- Constant phase function (later)

Heterogeneous:

- Coefficients and/or phase function vary across the volume
- Can be represented using 3D textures
- (e.g., voxel grid, procedural)

http://wikipedia.org

Representation Example: OpenVDB

[K. Museth, 2013]

- Open source library
- Manages volume data
- Discretized, sparse, hierarchical grid

Data Acquisition Examples

- Real-world measurements via tomography
- Simulation, e.g.,
 - Fluids,
 - Fire and smoke,
 - Fog

https://docs.blender.org

Simulating Volumes

Mathematical Formulation of Volumetric Light Transport

So far: Assume Vacuum

• Compute $L_o(x, \omega_o)$ using the rendering equation

Volume Absorbs and Scatters Light

- Compute $L_o(x, \omega_o)$ using the rendering equation
- Only a fraction $T(a,b)L_o(x,\omega_o)$ arrives at the eye

Volume Emits Light

- Compute $L_o(x, \omega_o)$ using the rendering equation
- Only a fraction $T(a,b)L_o(x,\omega_o)$ arrives at the eye
- Every point z between a and b might emit light

Volume Scatters Light

- Compute $L_o(x, \omega_o)$ using the rendering equation
- Only a fraction $T(a,b)L_o(x,\omega_o)$ arrives at the eye
- Every point z between a and b might emit light
- Every point z might be illuminated through the volume

Attenuation

Computing Absorption and Out-Scattering

http://commons.wikimedia.org

Attenuation = Absorption + Out-Scattering

- Every point in the volume might absorb light or scatter it in other directions
- Modeled by absorption and scattering densities: $\mu_a(z)$ and $\mu_s(z)$
- Might depend on position, direction, time, wavelength,...
- For simplicity: we assume only positional dependence

Computing Absorption – Intuition

- Consider a small segment Δz
- ullet Along that segment, radiance is reduced from L to L'
- $L' = L \mu_a L \Delta z$
- Where μ_a is the percentage of radiance that is absorbed (per unit distance)

Computing Absorption – Intuition

- Consider a small segment Δz
- ullet Along that segment, radiance is reduced from L to L'
- $L' = L \mu_{\alpha} L \Delta z$
- Where μ_a is the percentage of radiance that is absorbed (per unit distance)

So the absorbed radiance is: $\Delta L = L' - L = -\mu_a L \Delta z$

Computing Absorption – Exponential Decay

- $\Delta L = -\mu_a L \Delta z$
- For infinitely small Δz , this becomes
- $dL = -\mu_a L dz$
- A differential equation that models exponential decay!
- Solution: $L(a) = L_o(x) e^{-\int_b^a \mu_a(t) dt}$

Computing Out-Scattering

- Same as absorption, only different factor!
- $\mu_s(z)$: percentage of light scattered at point z

•
$$L(a) = L_o(x) e^{-\int_b^a \mu_S(t) dt}$$

Computing Attenuation

- Fraction of light that is neither absorbed nor out-scattered
- $\mu_t = \mu_a + \mu_s$
- $L(a) = L_o(x) e^{-\int_b^a (\mu_a(t) + \mu_s(t)) dt}$

• Attenuation: $T(a,b) = e^{-\int_b^a \mu_t(t) dt}$

Computing Attenuation – Homogeneous

Simple case: constant density / attenuation

•
$$\mu_t(z) = \mu_t \quad \forall z$$

•
$$T(a,b) = e^{-\int_b^a \mu_t(t) dt} = e^{-(a-b)\mu_t}$$

Estimating Attenuation

- We need to solve another integral:
 - $T(a,b) = e^{-\int_b^a \mu_t(t) dt}$
- Many solutions, e.g., Monte Carlo integration (next semester)
- Simple solution: Quadrature

Estimating Attenuation – Ray Marching

We need to solve another integral:

•
$$T(a,b) = e^{-\int_b^a \mu_t(t) dt}$$

- Simple solution: Quadrature
- Ray marching: evaluate at discrete positions (fixed stepsize Δz)
- $\int_b^a \mu_t(t) dt \approx \sum_i \mu_t(z_i) \Delta z$

Emission

Explosions!

http://wikipedia.org

Every Point Might Emit Light

- Assume z emits $L_e(z)$ towards a
- Some of that light might be absorbed or out-scattered: It is attenuated
- $L(a) = L_e(z) T(z, a)$

Every Point Might Emit Light

- Assume z emits $L_e(z)$ towards a
- Some of that light might be absorbed or out-scattered: It is attenuated
- $L(a) = L_e(z) T(z, a)$

Happens at every point along the ray!

•
$$L(a) = \int_a^b L_e(z) T(z, a) dz$$

Another integral...

Ray Marching for Emission

- Same as before: integrate via quadrature
- $\int_a^b L_e(z) T(z,a) dz \approx \sum_i L_e(z_i) T(z_i,a) \Delta z$
- Attenuation $T(z_i, a)$ estimated as before

Ray Marching for Emission

- Same as before: integrate via quadrature
- $\int_a^b L_e(z) T(z,a) dz \approx \sum_i L_e(z_i) T(z_i,a) \Delta z$
- Attenuation $T(z_i, a)$ estimated as before
- Attenuation can be incrementally updated:
 - $T(z_i, a) = T(z_{i-1}, a) T(z_i, z_{i-1})$
 - (because it is an exponential function)

In-Scattering

Accounting for Reflections Inside the Volume

Direct Illumination

- Account for the (attenuated) direct illumination at every point z
- Similar to the rendering equation:
- $L_o(z, \omega_o) = \int_{\Omega} L_i(x, \omega_i) f_p(\omega_i, \omega_o) d\omega_i$
- Integration over the whole sphere Ω

• The **phase function** f_p takes on the role of the BSDF

Phase Functions

- $L_o(z, \omega_o) = \int_{\Omega} L_i(x, \omega_i) f_p(\boldsymbol{\omega_i}, \boldsymbol{\omega_o}) d\omega_i$
- Describe what fraction of light is reflected from ω_i to ω_o
- Similar to BSDF for surface scattering
- Simplest example: isotropic phase function
 - $f_p(\omega_i, \omega_o) = \frac{1}{4\pi}$
 - (energy conservation: $\int_{\Omega} \frac{1}{4\pi} d\omega = 1$)

Phase Functions: Henyey-Greenstein

- Widely used
- Easy to fit to measured data

•
$$f_p(\omega_i, \omega_o) = \frac{1}{4\pi} \frac{1 - g^2}{(1 + g^2 + 2g\cos(\omega_i, \omega_o))^{\frac{3}{2}}}$$

- g: asymmetry (scalar)
- $\cos(\omega_i, \omega_o)$: cosine of the angle formed by ω_i and ω_o

Henyey-Greenstein: Asymmetry Parameter

- g = 0: isotropic
- Negative g: back scattering
- Positive g: forward scattering

Back Scattering

http://commons.wikimedia.org

Forward Scattering

http://coclouds.com

How to Estimate Volume Direct Illumination

- Reflected radiance at a point z: $L_o(z, \omega_o) = \int_{\Omega} L_i(x, \omega_i) f_p(\omega_i, \omega_o) d\omega_i$
- In our framework:
 - Sum over all point lights (as for surfaces)
 - Trace shadow ray (as for surfaces)
 - Estimate attenuation along the shadow ray (as for surfaces)

Ray Marching to Compute In-Scattering

- Same as for emission
- Goal: estimate the integral $\int_a^b T(z,a) \ \mu_{\scriptscriptstyle S}(z) \ L_i(z) \ f_p \ dz$
- Quadrature:
 - $\int_a^b T(z,a) \,\mu_s(z) \,L_i(z) \,f_p \,dz \approx \sum_i T(z_i,a) \,\mu_s(z) \,L_i(z_i) \,f_p \,\Delta z$

Ray Marching to Compute In-Scattering

- Same as for emission
- Goal: estimate the integral $\int_a^b T(z,a) L_i(z) f_p dz$
- Quadrature:
 - $\int_a^b T(z,a) L_i(z) f_p dz \approx \sum_i T(z_i,a) L_i(z_i) f_p \Delta z$
- Attenuation $T(z_i, a)$ estimated as before
- Attenuation can be incrementally updated:
 - $T(z_i, a) = T(z_{i-1}, a) T(z_i, z_{i-1})$
 - (because it is an exponential function)

Putting it all Together

- Estimate direct illumination at x (as before)
- If volume: continue straight ahead until no volume (yields intersections y, z)

- Estimate direct illumination at x (as before)
- If volume: continue straight ahead until no volume (yields intersections y, z)
- Ray marching to estimate attenuation, emission,

- Estimate direct illumination at x (as before)
- If volume: continue straight ahead until no volume (yields intersections y, z)
- Ray marching to estimate attenuation, emission, and in-scattering
 - Shadow rays to the lights + ray marching to compute attenuation

- Estimate direct illumination at x (as before)
- If volume: continue straight ahead until no volume (yields intersections y, z)
- Ray marching to estimate attenuation, emission, and in-scattering
 - Shadow rays to the lights + ray marching to compute attenuation
- Compute illumination at z (as before)

- Estimate direct illumination at x (as before)
- If volume: continue straight ahead until no volume (yields intersections y, z)
- Ray marching to estimate attenuation, emission, and in-scattering
 - Shadow rays to the lights + ray marching to compute attenuation
- Compute illumination at z (as before)
- Add together:
 - Attenuated illumination from z
 - Volumetric emission along \overline{xy}
 - In-scattering along \overline{xy}
 - Direct illumination at x

- Estimate direct illumination at x (as before)
- If volume: continue straight ahead until no volume (yields intersections y, z)
- Ray marching to estimate attenuation, emission, and in-scattering
 - Shadow rays to the lights + ray marching to compute attenuation
- Compute illumination at z (as before)
- Add together:

Multiply

- Attenuated illumination from z
- Volumetric emission along \overline{xy}
- In-scattering along \overline{xy}
- Direct illumination at x

References

• [K. Museth, 2013] "VDB: High-Resolution Sparse Volumes With Dynamic Topology". ACM Transactions on Graphics, Volume 32, Issue 3, Pages 27:1-27:22, June 2013