
Computer Graphics

- Splines -

Philipp Slusallek

Curves
• Curve descriptions

– Explicit functions

• y(x)= ± sqrt(r2 - x2), restricted domain (x [-1, 1])

– Implicit functions

• x2 + y2 = r2 unknown solution set

– Parametric functions

• x(t)= r cos(t), y(t)= r sin(t), t [0, 2]

• Flexibility and ease of use

• Typically, use of polynomials
– Avoids complicated functions (z.B. pow, exp, sin, sqrt)

– Use simple polynomials, typically of low degree

Parametric curves
• Separate function in each coordinate

– 3D: f(t)= (x(t), y(t), z(t))

Monomials
• Monomial basis

– Simple basis: 1, t, t2, ... (t usually in [0 .. 1])

• Polynomial representation

– Coefficients can be determined from a sufficient number of

constraints (e.g. interpolation of given points)

• Given (n+1) parameter values ti and points Pi

• Solution of a linear system in the Ai − possible, but inconvenient

• Matrix representation

𝑃(𝑡) = 𝑥(𝑡) 𝑦(𝑡) 𝑧(𝑡) =

𝑖=0

𝑛

𝑡𝑖𝐴𝑖
Monomials

Degree (= Order – 1)

Coefficients R3

𝑃(𝑡) = 𝑥(𝑡) 𝑦(𝑡) 𝑧(𝑡) = 𝑇(𝑡) 𝐴

Derivatives
• Derivative = tangent vector

– Polynomial of degree (n-1)

• Continuity and smoothness between

parametric curves
– C0 = G0 = same point

– Parametric continuity C1

• Tangent vectors are identical

– Geometric continuity G1

• Same direction of tangent vectors

– Similar for higher order derivatives

𝑃´(𝑡) = 𝑥´(𝑡) 𝑦´(𝑡) 𝑧´(𝑡) = 𝑇´(𝑡) 𝐴

More on Continuity
• At one point:

• Geometric Continuity:
– G0: curves are joined together at that point

– G1: first derivatives are proportional at joint point

• Same direction but not necessarily same length

– G2: first and second derivatives are proportional

• Parametric Continuity:
– C0: curves are joined

– C1: first derivative equal

– C2: first and second derivatives are equal.

• If t is the time, this implies the acceleration is continuous.

– Cn: all derivatives up to and including the nth are equal.

Linear Interpolation
• Hat Functions and Linear Splines (C0/G0 continuity)

2 3 41

0 1-1

1

2 3 41

y2

y3 T(t)

Lagrange Interpolation
• Interpolating basis functions

– Lagrange polynomials for a set of parameter values T={t0, ..., tn}

• Properties
– Good for interpolation at given parameter values

• At each ti: One basis function = 1, all others = 0

– Polynomial of degree n (n factors linear in t)

• Infinitely continuous derivatives everywhere

• Lagrange Curves
– Use Lagrange Polynomials with point coefficients

Li
n t =ෑ

𝑗=0
𝑖≠𝑗

𝑛
𝑡 − 𝑡𝑗
𝑡𝑖 − 𝑡𝑗

, with 𝐿𝑖
𝑛(𝑡𝑗) = 𝛿𝑖𝑗 = ቊ

1 𝑖 = 𝑗
0 otherwise

𝑃(𝑡) =

𝑖=0

𝑛

𝐿𝑖
𝑛(𝑡)𝑃𝑖

Lagrange Interpolation
• Simple Linear Interpolation

– T={t0, t1}

• Simple Quadratic Interpolation
– T={t0, t1, t2}

t0 t1

1 L0
1 L1

1

𝐿0
2(𝑡) =

𝑡 − 𝑡1
𝑡0 − 𝑡1

𝑡 − 𝑡2
𝑡0 − 𝑡2

t0 t2

1

L0
1

L0
2t1

-1

Problems
• Problems with a single polynomial

– Degree depends on the number of interpolation constraints

– Strong overshooting for high degree (n > 7)

– Problems with smooth joints

– Numerically unstable

– No local changes

Splines
• Functions for interpolation & approximation

– Standard curve and surface primitives in 3D modeling & fonts

– Key frame and in-betweens in animations

– Filtering and reconstruction of images

• Historically
– Name for a tool in ship building

• Flexible metal strip that tries to stay straight

– Within computer graphics:

• Piecewise polynomial function

• Decouples continuity and degree of curve

Segment 1 Segment 2 Segment 3 Segment 4

What Continuity ?

Hermite Interpolation
• Hermite Basis (cubic)

– Interpolation of position P and tangent P´ information

for t= {0, 1}

– Very easy to piece together with G1/C1 continuity

– Basis functions

0 1 𝐻0
3 𝐻3

3

𝐻2
3

𝐻1
3

Hermite Interpolation
• Properties of Hermite Basis Functions

– H0 (H3) interpolates smoothly from 1 to 0 (1 to 0)

– H0 and H3 have zero derivative at t= 0 and t= 1

• No contribution to derivative (H1, H2)

– H1 and H2 are zero at t= 0 and t= 1

• No contribution to position (H0, H3)

– H1 (H2) has slope 1 at t= 0 (t= 1)

• Unit factor for specified derivative vector

• Hermite polynomials
– P0, P1 are positions R3

– P´0, P´1 are derivatives (tangent vectors) R3

𝑃(𝑡) = 𝑃0𝐻0
3(𝑡) + 𝑃0´𝐻1

3(𝑡) + 𝑃1´𝐻2
3(𝑡) + 𝑃1𝐻3

3(𝑡)

𝐻0
3 𝐻3

3

𝐻2
3

𝐻1
3

Examples: Hermite Interpolation

G1 continuity

Matrix Representation
• Matrix representation

Matrix Representation
• For cubic Hermite interpolation we obtain:

• Solution:
– Two matrices must multiply to unit matrix

or

Bézier
• Bézier Basis [deCasteljau´59, Bézier´62]

– Different curve representation

– Start and end point

– 2 point that are approximated

by the curve (cubics)

– P´0= 3(b1-b0) and P´1= 3(b3-b2)

• Factor 3 due to derivative of t3

Basis transformation
• Transformation

– P(t)=T MH GH = T MH (MHB GB) = T (MHMHB) GB = T MB GB

• Bézier Curves & Basis Functionss

𝐵0
3

𝐵1
3 𝐵2

3

𝐵3
3

Bernstein-

Polynomials

Properties: Bézier
• Advantages:

– End point interpolation

– Tangents explicitly specified

– Smooth joints are simple

• P3, P4, P5 collinear → G1 continuous

– Geometric meaning of control points

– Affine invariance

 Bi(t) = 1

– Convex hull property

• For 0<t<1: Bi(t) 0

– Symmetry: Bi(t) = Bn-i(1-t)

• Disadvantages
– Smooth joints need to be maintained explicitly

• Automatic in B-Splines (and NURBS)

DeCasteljau Algorithm
• Direct evaluation of the basis functions

– Simple but expensive

• Use recursion
– Recursive definition of the basis functions

– Inserting this once yields:

– with the new Bézier points given by the recursion

𝐵𝑖
𝑛(𝑡) = tB𝑖−1

𝑛−1(𝑡) + (1 − 𝑡)𝐵𝑖
𝑛−1(𝑡)

𝑃(𝑡) =

𝑖=0

𝑛

𝑏𝑖
0𝐵𝑖

𝑛(𝑡) =

𝑖=0

𝑛−1

𝑏𝑖
1(𝑡)𝐵𝑖

𝑛−1(𝑡)

𝑏𝑖
𝑘(𝑡) = tb𝑖+1

𝑘−1(𝑡) + (1 − 𝑡)𝑏𝑖
𝑘−1(𝑡) and 𝑏𝑖

0(𝑡) = 𝑏𝑖

DeCasteljau Algorithm
• DeCasteljau-Algorithm:

– Recursive degree reduction of the Bezier curve by using the

recursion formula for the Bernstein polynomials

• Example:
– t= 0.5

𝑏𝑖
𝑘(𝑡) = tb𝑖+1

𝑘−1(𝑡) + (1 − 𝑡)𝑏𝑖
𝑘−1(𝑡)

𝑃(𝑡) =

𝑖=0

𝑛

𝑏𝑖
0𝐵𝑖

𝑛(𝑡) =

𝑖=0

𝑛−1

𝑏𝑖
1(𝑡)𝐵𝑖

𝑛−1(𝑡) = ⋯ = 𝑏𝑖
𝑛(𝑡) ⋅ 1

DeCasteljau Algorithm
• Subdivision using the deCasteljau-Algorithm

– Take boundaries of the deCasteljau triangle as new control points

for left/right portion of the curve

• Extrapolation
– Backwards subdivision

• Reconstruct triangle from one side

Catmull-Rom-Splines
• Goal

– Smooth (C1)-joints between (cubic) spline segments

• Algorithm
– Tangents given by neighboring points Pi-1 Pi+1

– Construct (cubic) Hermite segments

• Advantage
– Arbitrary number of control points

– Interpolation without overshooting

– Local control

Matrix Representation
• Catmull-Rom-Spline

– Piecewise polynomial curve

– Four control points per segment

– For n control points we obtain (n-3) polynomial segments

• Application
– Smooth interpolation of a given sequence of points

– Key frame animation, camera movement, etc.

– Only G1-continuity

– Control points should be equidistant in time

__

Choice of Parameterization
• Problem

– Often only the control points are given

– How to obtain a suitable parameterization ti ?

• Example: Chord-Length Parameterization

– Arbitrary up to a constant factor

• Warning
– Distances are not affine invariant !

– Shape of curves changes under transformations !!

Parameterization
• Chord-Length versus uniform Parameterization

– Analog: Think P(t) as a moving object with mass that may

overshoot

Uniform

Chord-Length

Spline Surfaces

Parametric Surfaces
• Same Idea as with Curves

– P: R2 → R3

– P(u,v) = (x(u,v), y(u,v), z(u,v))TR3 (also P(R4))

• Different Approaches
– Triangular Splines

• Single polynomial in (u,v) via barycentric

coordinates with respect to a

reference triangle (e.g. B-Patches)

– Tensor Product Surfaces

• Separation into polynomials in u and in v

– Subdivision Surfaces

• Start with a triangular mesh in R3

• Subdivide mesh by inserting new vertices

– Depending on local neighborhood

• Only piecewise parameterization (in each triangle)

Tensor Product Surfaces
• Idea

– Create a “curve of curves"

• Simplest case: Bilinear Patch
– Two lines in space

– Connected by lines

– Bézier representation (symmetric in u and v)

– Control mesh Pij

𝑃(𝑢, 𝑣) = (1 − 𝑢)𝑃1(𝑣) + 𝑢𝑃2(𝑣) =

(1 − 𝑢)((1 − 𝑣)𝑃00 + 𝑣𝑃10) + 𝑢((1 − 𝑣)𝑃01 + 𝑣𝑃11)

P00
P01

P10

P11

u

v

𝑃1(𝑣) = (1 − 𝑣)𝑃00 + 𝑣𝑃10
𝑃2(𝑣) = (1 − 𝑣)𝑃01 + 𝑣𝑃11

Tensor Product Surfaces
• General Case

– Arbitrary basis functions in u and v

• Tensor Product of the function space in u and v

– Commonly same basis functions and same degree in u and v

• Interpretation
– Curve defined by curves

– Symmetric in u and v

𝑃(𝑢, 𝑣) =

𝑖=0

𝑚

𝑗=0

𝑛

𝐵𝑖
𝑚(𝑢)𝐵𝑗

𝑛(𝑣)𝑃𝑖𝑗

𝑃(𝑢, 𝑣) =

𝑖=0

𝑚

𝐵𝑖
´(𝑢)

𝑗=0

𝑛

𝐵𝑗(𝑣)𝑃𝑖𝑗

𝑃𝑖
´(𝑣)

Matrix Representation
• Similar to Curves

– Geometry now in a „tensor“ (m x n x 3)

– Degree

• u: m

• v: n

• Along the diagonal (u=v): m+n

– Not nice → „Triangular Splines“

Tensor Product Surfaces
• Properties Derived Directly From Curves

• Bézier Surface:
– Surface interpolates corner vertices of mesh

– Vertices at edges of mesh define boundary curves

– Convex hull property holds

– Simple computation of derivatives

– Direct neighbors of corners vertices define tangent plane

• Similar for Other Basis Functions

Tensor Product Surfaces
• Modifying a Bézier Surface

Tensor Product Surfaces
• Representing the Utah Teapot as a set continuous

Bézier patches
– http://www.holmes3d.net/graphics/teapot/

Operations on Surfaces
• deCausteljau/deBoor Algorithm

– Once for u in each column

– Once for v in the resulting row

– Due to symmetry also in other order

• Similarly we can derive the related algorithms
– Subdivision

– Extrapolation

– Display

– ...

Ray Tracing of Spline Surfaces
• Several approaches

– Tessellate into many triangles (using deCasteljau or deBoor)

• Often the fasted method

• May need enormous amounts of memory

– Recursive subdivision

• Simply subdivide patch recursively

• Delete parts that do not intersect ray (Pruning)

• Fixed depth ensures crack-free surface

• May cache intermediate results for next rays

– Bézier Clipping [Sederberg et al.]

• Find two orthogonal planes that intersect in the ray

• Project the surface control points into these planes

• Intersection must have distance zero

➔ Root finding

➔ Can eliminate parts of the surface

where convex hull does not intersect ray

• Must deal with many special cases – rather slow

Bézier Clipping

Bézier Clipping

Higher Dimensions
• Volumes

– Spline: R3 → R

• Volume density

• Rarely used

– Spline: R3 → R3

• Modifications of points in 3D

• Displacement mapping

• Free Form Deformations (FFD)

FFD

