Computer Graphics

- Distribution Ray Tracing -

Philipp Slusallek

Overview

- Other Optical Effects
 - Not yet included in Whitted-style ray tracing
- Stochastic Sampling
- Distribution Ray-Tracing

Problems

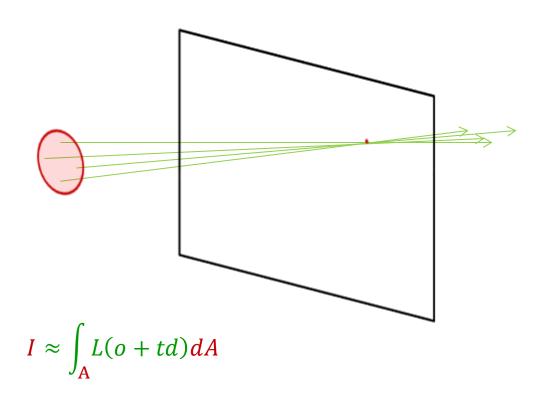
- Anti-aliasing
- Depth of field
- Motion blur
- BRDF
- Area Lights

Anti-aliasing

- Anti-aliasing
- Depth of field
- Motion blur
- BRDF
- Area Lights

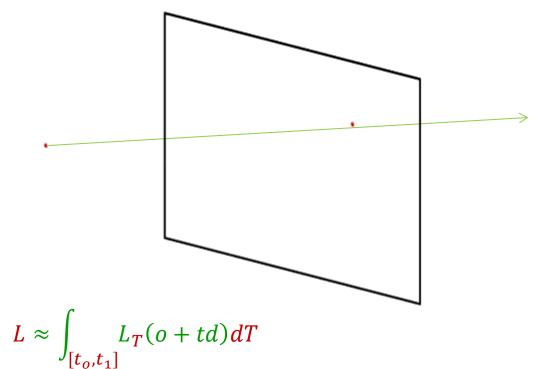


- Anti-aliasing
- Depth of field
- Motion blur
- BRDF
- Area Lights



Motion blur

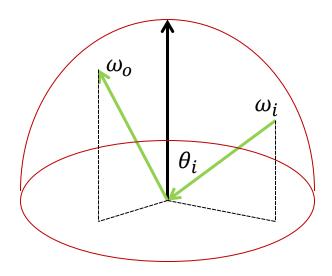
- Anti-aliasing
- Depth of field
- **Motion blur**
- **BRDF**
- **Area Lights**



$$L \approx \int_{[t_o, t_1]} L_T(o + td) dT$$

BRDF

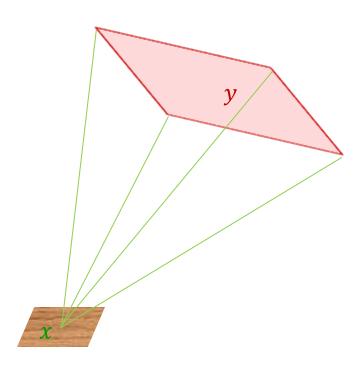
- Anti-aliasing
- Depth of field
- Motion blur
- BRDF
- Area Lights



$$L_o = L_e + \int_{\Omega_+} f_r L_i \cos \theta_i \, d\omega_i$$

Area Lights

- Anti-aliasing
- Depth of field
- Motion blur
- BRDF
- Area Lights

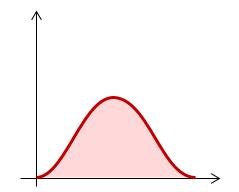


$$E_i = \int_A V(x, y) \frac{\cos \theta_A}{\|x - y\|^2} dA$$

Integration by MC-Sampling

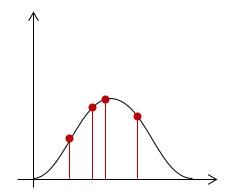
- Anti-aliasing
- Depth of field
- Motion blur
- BRDF
- Area Lights

 $R = \int_{D} f(x) dx$



→ Monte-Carlo Integration

$$R \approx \frac{D}{n} \sum_{i=1}^{n} f(x_i)$$
$$x_i = \text{uniform}(\mathbf{D})$$



STOCHASTIC SAMPLING

(VERY SHORT INTRO)

Random Number

Random Number

- Uniformly distributed
- $-\xi$ in [0, 1)

Pseudo-Random Number

- Linear congruential
- Mersenne-Twister
- **—** ...
- Speed / evenness trade-off

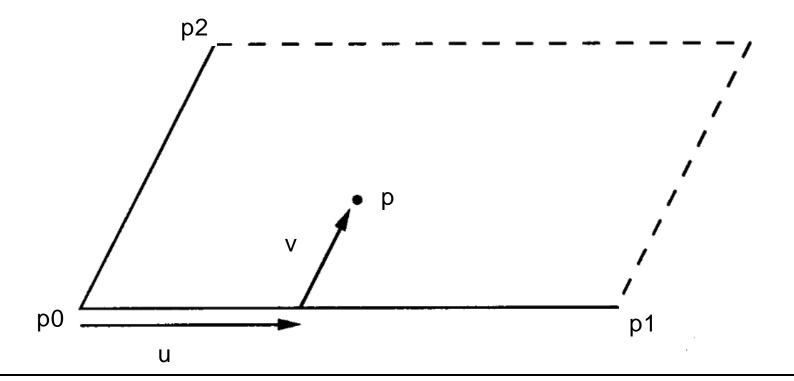
Parallelogram Sampling

Parametric Form

$$- p(u,v) = p_0 + u(p_1 - p_0) + v(p_2 - p_0) = (1 - u - v)p_0 + up_1 + v p_2$$

Random Sampling

$$- p(\xi_1, \xi_2)$$



Triangle Sampling

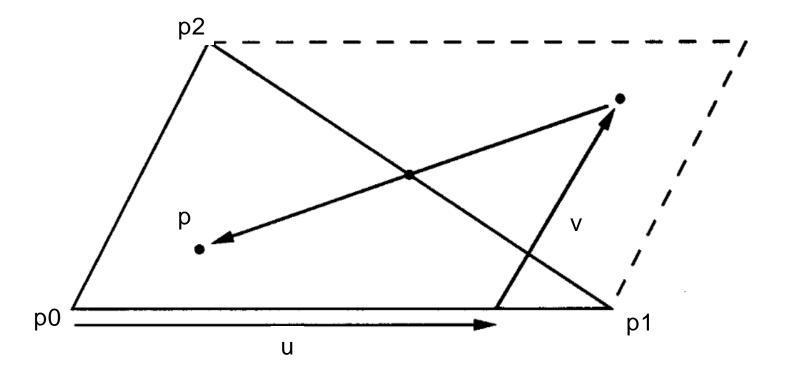
Parametric Form

$$- p(u, v) = (1 - u - v)p_0 + up_1 + v p_2$$

Random Sampling

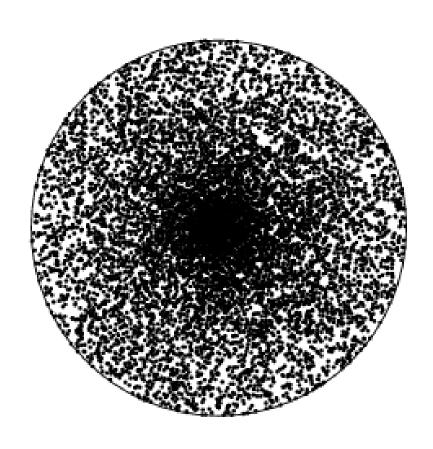
- if
$$\xi_1 + \xi_2 < 1 : p(\xi_1, \xi_2)$$

- if
$$\xi_1 + \xi_2 > 1$$
: $p(1 - \xi_1, 1 - \xi_2)$



Disc Sampling

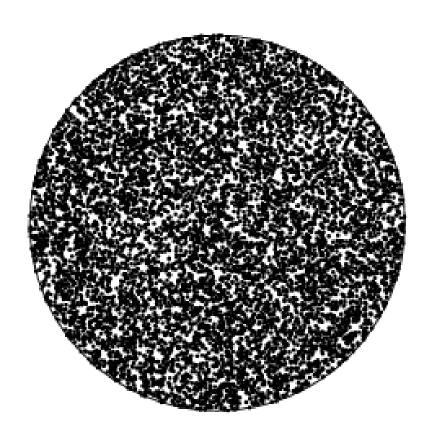
- Parametric Form
 - $p(u, v) = Polar2Cartesian(R v, 2 \pi u) // disc radius R$
- Naïve Sampling (wrong!)
 - $p(\xi_1, \xi_2)$



Disc Sampling

- Parametric Form
 - $p(u, v) = Polar2Cartesian(R v, 2 \pi u) // disc radius R$
- Random Sampling
 - $-p(\xi_1,\sqrt{\xi_2})$
 - Results in uniform sampling

 For other cases, see Phil Dutre's Global Illumination Compendium at

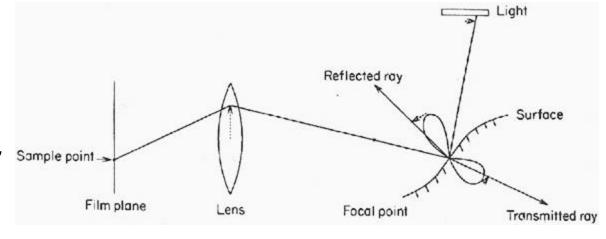


http://people.cs.kuleuven.be/~philip.dutre/GI/TotalCompendium.pdf

DISTRIBUTION RAY-TRACING

Distribution Ray Tracing

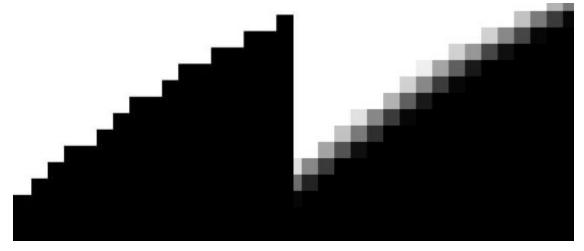
- Apply random sampling for many aspects in RT
 - Pixel
 - Anti-aliasing
 - Lens
 - · Depth of field
 - Time
 - Motion blur
 - BRDF
 - Glossy reflections & refractions
 - Area Lights
 - Soft shadows
 - Base on paper:
 R. Cook et al.,
 Distributed Ray Tracing,
 Siggraph'84



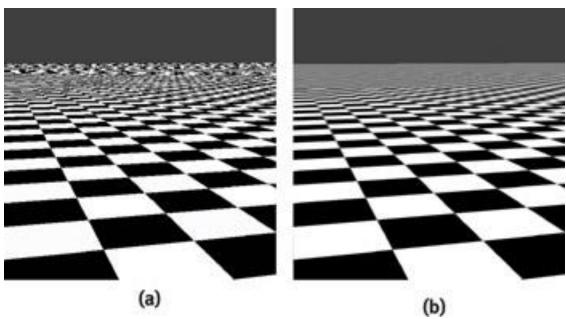
Anti-Aliasing

Artifacts

Jagged edges



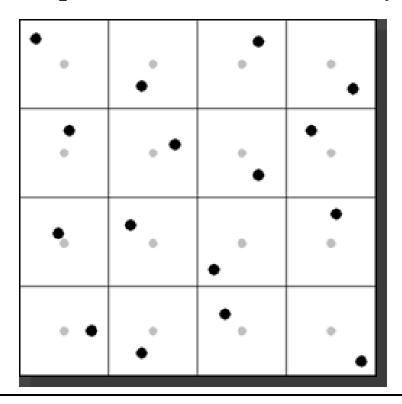
Aliased patterns



Anti-Aliasing

Approach

- Average samples over pixel area
- Akin to sensor cells of measuring device collecting photons
- Random offset of pixel raster coords from center
 - prc[coord] = pid[coord] + 0.5 + $(\xi 0.5)$



Anti-Aliasing

Basic Method

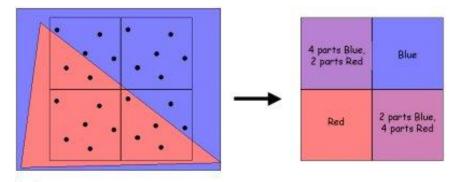
- Plain average
- Box filter f(x, y) = 1

$$- L = \frac{\sum_{i=1}^{n} L(\xi_{i1}, \xi_{i2})}{n}$$

Filtering

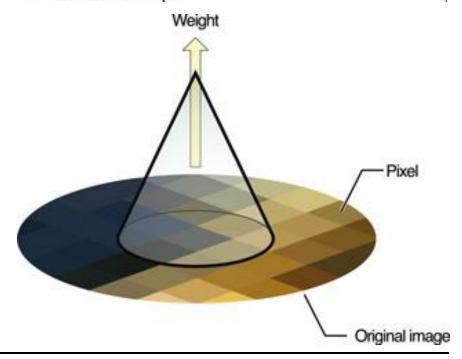
- Weighted average
- Filter f(x, y)

$$-L = \frac{\sum_{i=1}^{n} f(\xi_{i1}, \xi_{i2}) L(\xi_{i1}, \xi_{i2})}{\sum_{i=1}^{n} f(\xi_{i1}, \xi_{i2})}$$



Pixel

· Anti-Alias Sample

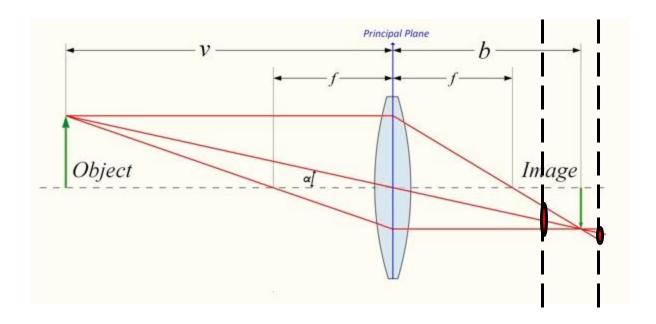


Real Camera

- Complex lenses that focus one distance onto the image
 - Finite aperture size
- Blurred features except for focal plane

Thin Lens

- Focus light rays from point on object onto image plane
 - Sharp features at focal plane
 - Blurred features before/beyond focal plane
- Depth of field: depth range with acceptably small circle of confusion
 - Smaller than one pixel



Compute ray through lens center

Compute focus point P_f on focal plane, determined by P_b and P_c

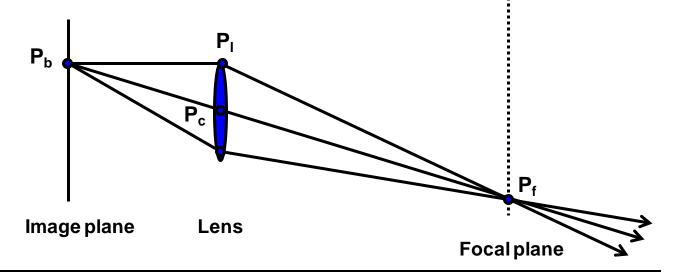
Compute new ray origin

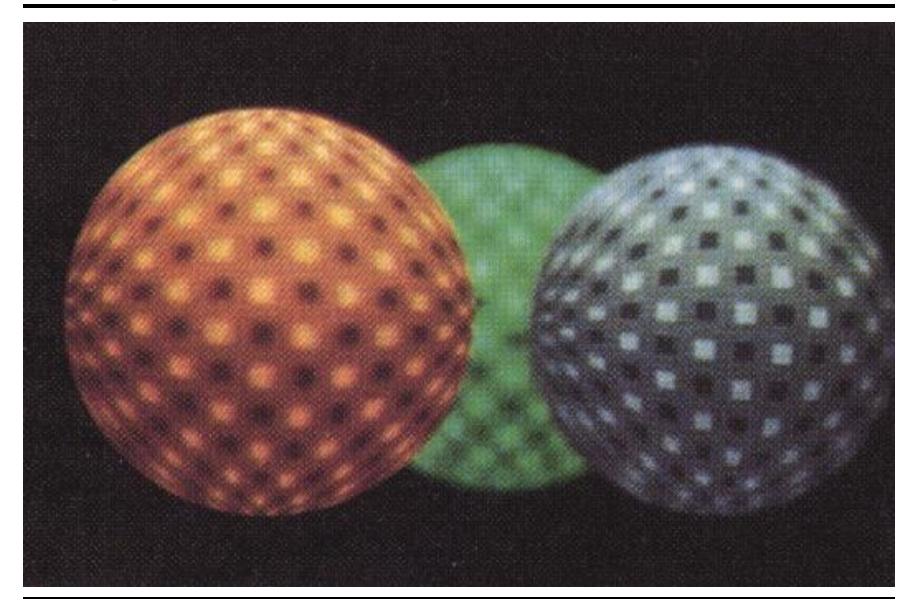
- Sample coordinates (x, y) of aperture diameter (= f / N)
- Compute P_I: ray.origin += P_c + x * camera.right + y * camera.up
- Might include modeling the shape of the aperture

Compute new ray direction

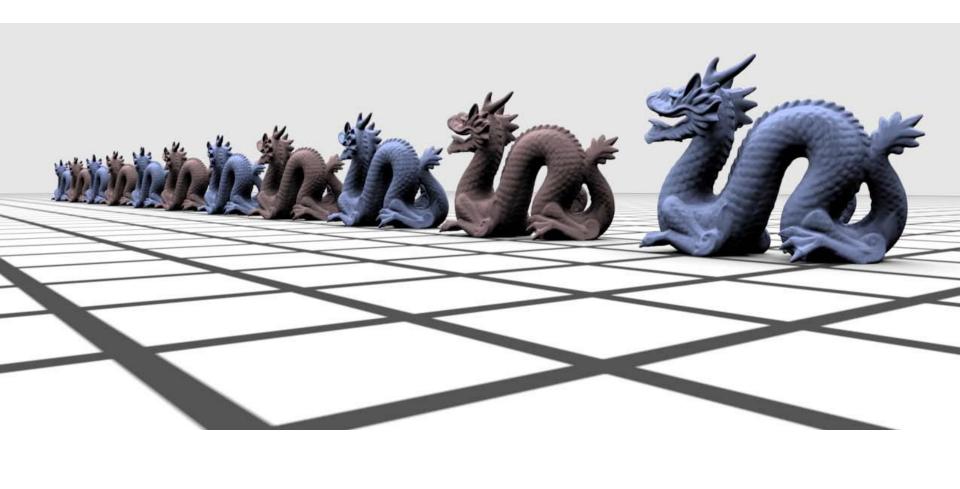
- Compute ray.direction = $P_f - P_l \rightarrow \text{vector from } P_l \text{ to } P_f$

Normalize

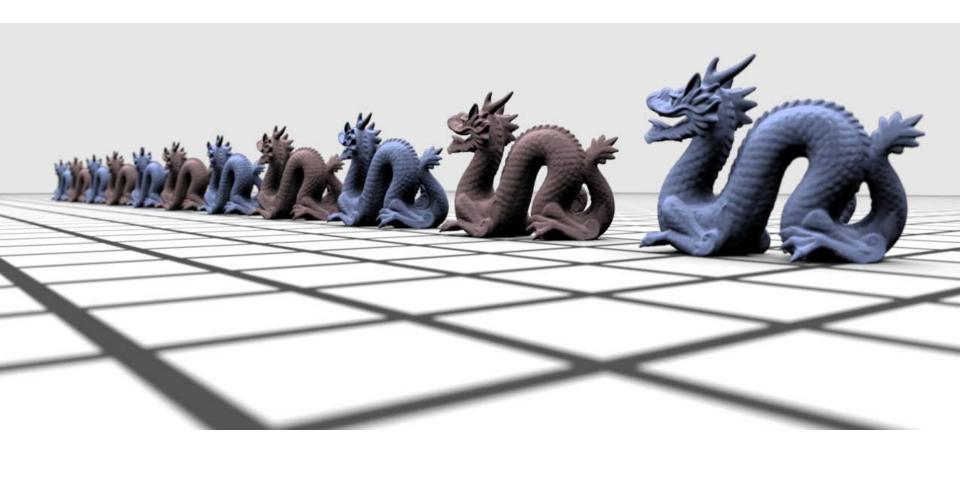




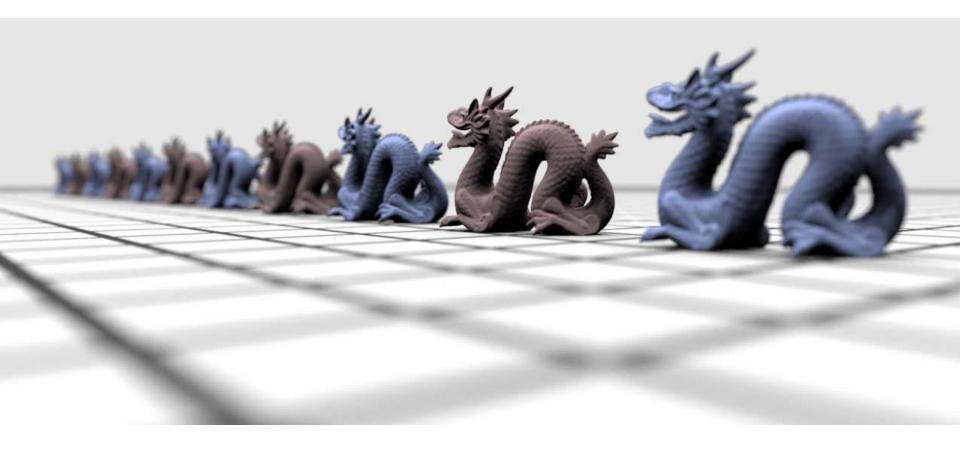
Zero Aperture



Small Aperture



Large Aperture

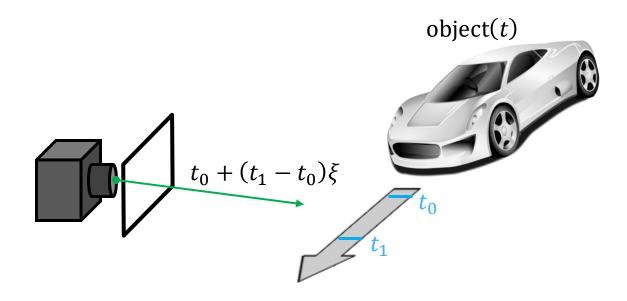


Very Large Aperture

Motion Blur

Real Camera

- Finite exposure time
- Shutter opening at t₀
- Shutter closing at t₁



Motion Blur

Real Camera

- Finite exposure time
- Shutter opening at t₀
- Shutter closing at t₁

Approach

- Sample time t in $[t_0, t_1)$: $t = t_0 + \xi (t_1 t_0)$
- Assign time t to new camera ray/path
- Models with moving camera and/or moving objects in the scene
 - Time-dependent transformations
 - Transform objects or inverse-transform ray to proper positions at t
- Assume instantaneous opening and closing
 - Can be generalized by modeling shape of aperture over time

Gotchas

Acceleration structures built over dynamic objects

Motion Blur

Reflections/Refractions

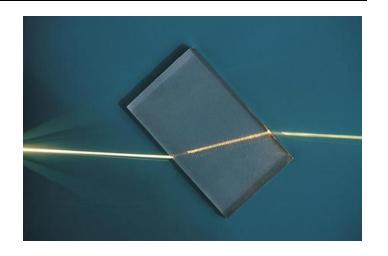
Dielectric Materials

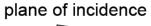
- $-\eta_i$ refractive index $\frac{c}{v}$
- Light: fastest path
- Snell's law:

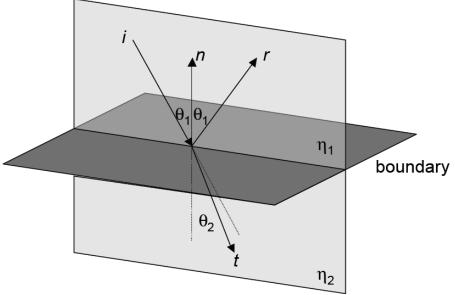
$$\frac{\sin \theta_1}{\sin \theta_2} = \frac{\eta_2}{\eta_1}$$

- if $\sin\theta_2 = \frac{\eta_1}{\eta_2}\sin\theta_1 > 1$

... then total inner reflection

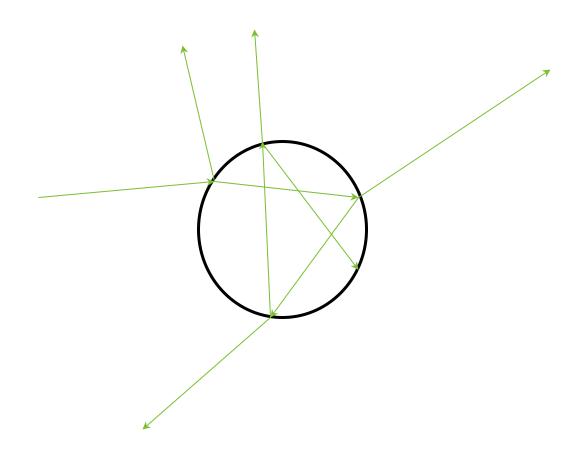






Reflections/Refractions

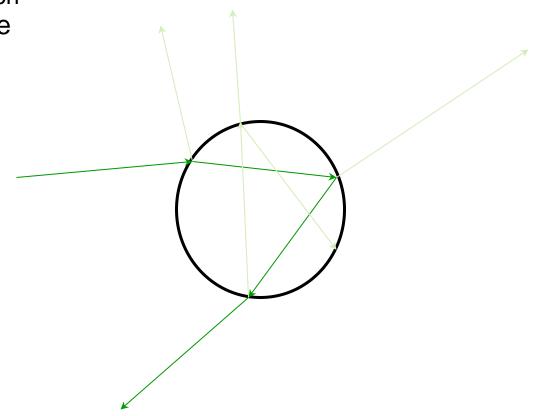
- Which ray to trace?
 - Both: may be exponential



Reflections/Refractions

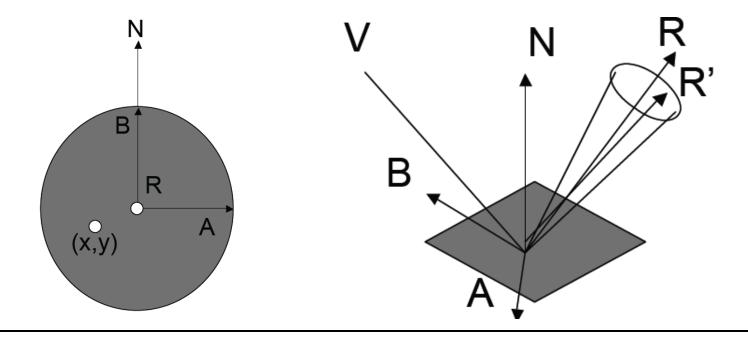
Which ray to trace?

- Pick one at random:
 - $\xi < 0.5$ reflection
 - $\xi \ge 0.5$ refraction
- Compensate for the energy-loss
 - $L_o = 2 \cdot L_i \cdot f_r$



Fuzzy Reflections/Refractions

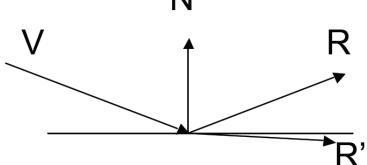
- Real Materials
 - Never perfectly smooth surfaces
- Empirical Approach
 - Compute orthonormal frame around reflected/refracted direction
 - Sample coordinates (x, y) on disc: ray.direction += x * a + y * b
- Or better use cosⁿ sampling (→ GI Compendium)



Fuzzy Reflections/Refractions

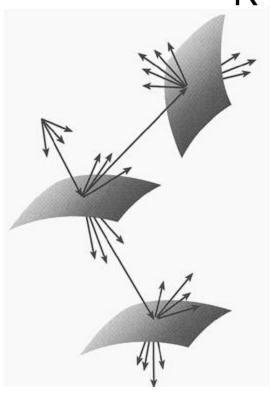
Gotchas

- Perturbed ray may may go inside
- Check sign of dot product with N
- Ignore rays on wrong side

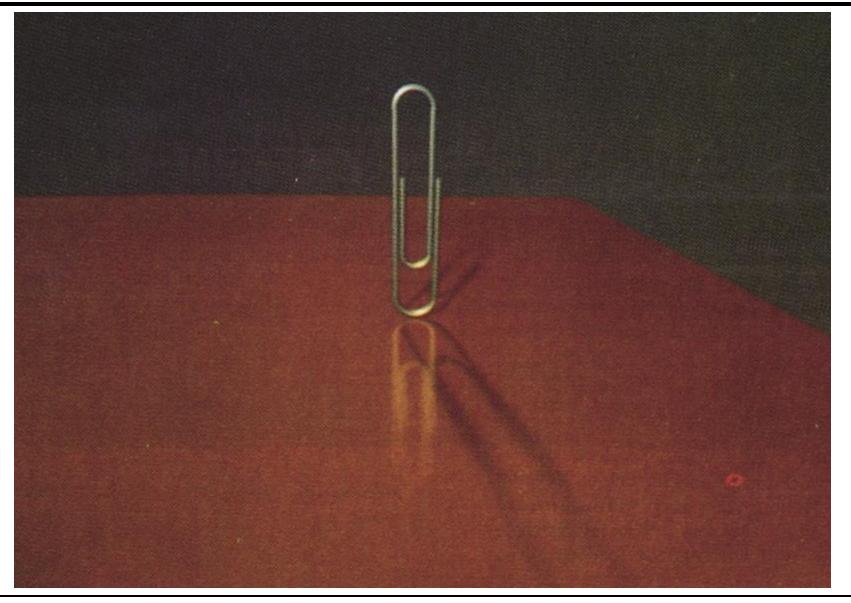


Inter-Reflections/Refractions

- Recursively repeat process
 - At surfaces with corresponding materials

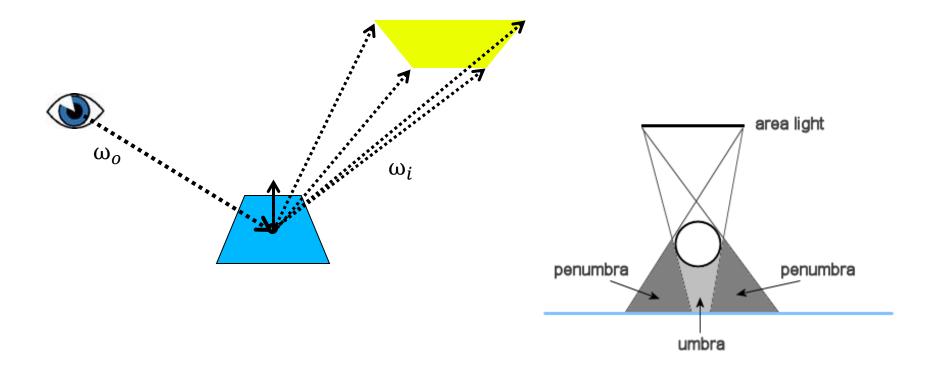


Fuzzy Reflections/Refractions



Soft Shadows

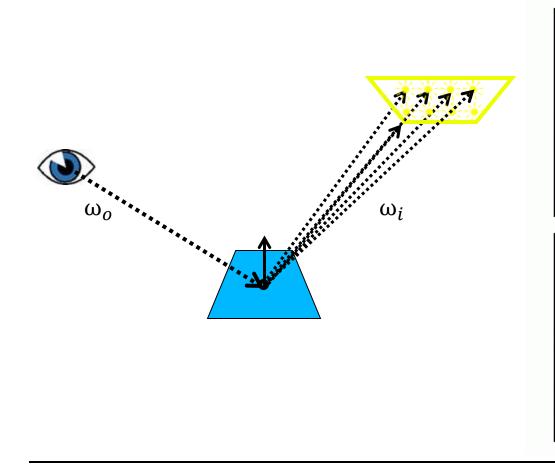
- Real Light Sources
 - Finite area

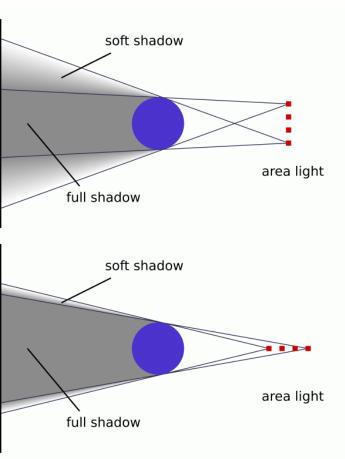


Soft Shadows

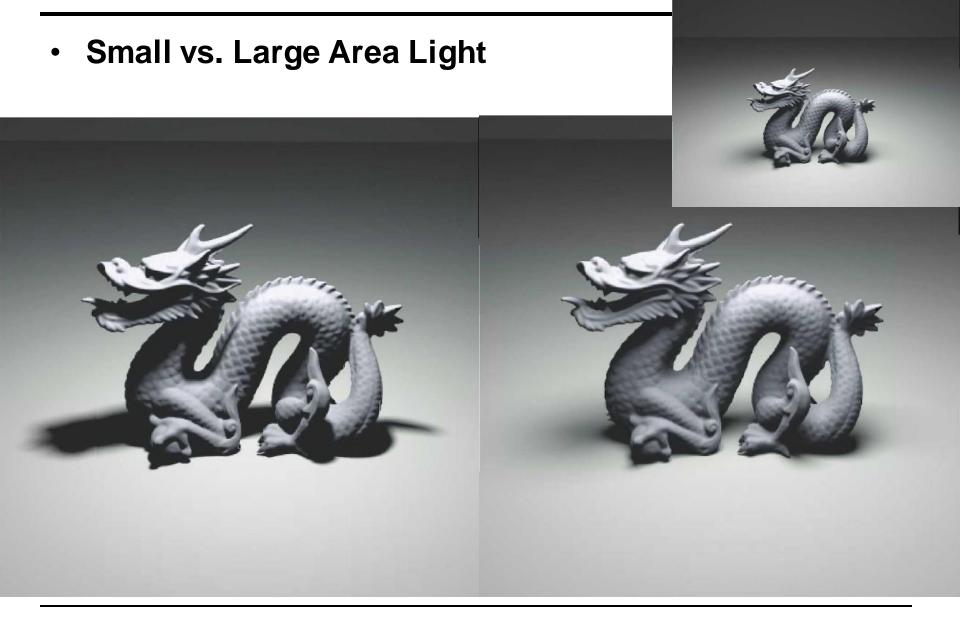
Approach

- Random sample point on surface of light source
- Scale intensity by area and cosine





Soft Shadows

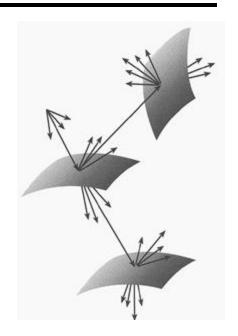


Combined Effects

High-Dimensional Sampling Space

- number of anti-aliasing samples
- x number of lens samples
- x number of time samples
- x number of material samples
- x number of light samples

 Increasing number of higher-order rays with decreasing effect on final pixels → bad²



Solution: Path-Based Approach

- Avoid exponential growth in ray tree
- Pick a single sample at each step: → Create a sample path
- Average results over several paths per pixel → path tracing (RIS)
 - Theoretical underpinning: Monte-Carlo Integration