Computer Graphics

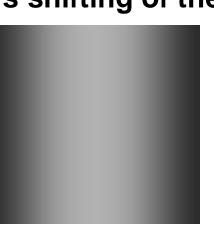
Spectral Analysis

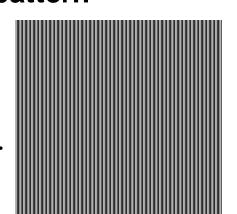
Philipp Slusallek

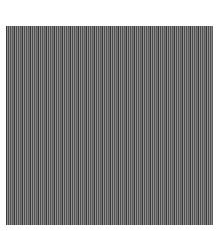
Spatial Frequency (of an image)

Frequency

- Inverse of period length of some structure in an image
- Unit [1/pixel]
- Lowest frequency
 - Image average
- Highest representable frequency
 - Nyquist frequency (1/2 the sampling frequency)
 - Defined by half the image resolution
- Phase allows shifting of the pattern







Fourier Transformation

 Any absolute integrable function f(x) can be expressed as an integral over sine and cosine waves:

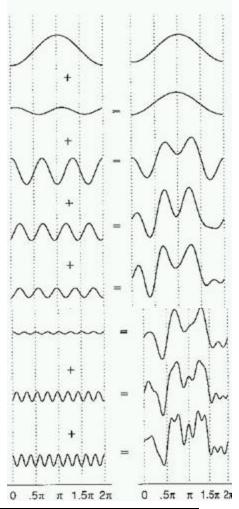
Analysis:
$$F(k) = F_x[f(x)](k) = \int_{-\infty}^{\infty} f(x)e^{-i2\pi kx}dx$$

Synthesis: $f(x) = F_x^{-1}[F(k)](x) = \int_{-\infty}^{\infty} F(k)e^{i2\pi kx}dk$

- Representation via complex exponential
 - $-e^{ix} = cos(x) + i sin(x)$ (see Taylor expansion)
- Division into even and odd parts
 - Even: f(x) = f(-x) (symmetry about y axis)
 - Odd: f(x) = -f(-x) (symmetry about origin)

$$f(x) = \frac{1}{2}[f(x) + f(-x)] + \frac{1}{2}[f(x) - f(-x)] = E(x) + O(x)$$

- Transform of each part
 - Even: cosine only; odd: sine only



Analysis & Synthesis

Symetric integral ([-a, a]) over an odd function is zero

Analysis

$$F(k) = \int_{-\infty}^{\infty} f(x) \left(\cos(-2\pi kx) + i\sin(-2\pi kx)\right) dx = b(k) + i a(k)$$

- Even term

$$b(k) = \int_{-\infty}^{\infty} f(x) \cos(2\pi kx) dx = \int_{-\infty}^{\infty} (E(x) + O(x)) \cos(2\pi kx) dx = \int_{-\infty}^{\infty} E(x) \cos(2\pi kx) dx$$

$$-\frac{1}{2} \cos(2\pi kx) dx = \int_{-\infty}^{\infty} E(x) \cos(2\pi kx) dx = \int_{-\infty}^{\infty} E(x) \cos(2\pi kx) dx$$

$$a(k) = \int_{-\infty}^{\infty} f(x)\sin(2\pi kx) dx = \int_{-\infty}^{\infty} (E(x) + O(x))\sin(2\pi kx) dx = \int_{-\infty}^{\infty} O(x)\sin(2\pi kx) dx$$

Synthesis

$$f(x) = \int F(k)(\cos(2\pi kx) + i\sin(2\pi kx)) dk = E(x) + O(x)$$

Even term

$$E(x) = \int_{-\infty}^{\infty} F(k)\cos(2\pi kx) dk = \int_{-\infty}^{\infty} (b(k) - i \ a(k))\cos(2\pi kx) dk = \int_{-\infty}^{\infty} b(k)\cos(2\pi kx) dk$$

$$= \int_{-\infty}^{\infty} Odd \text{ term}$$

$$O(x) = \int_{-\infty}^{\infty} F(k) i \sin(2\pi kx) dk = \int_{-\infty}^{\infty} (b(k) - i a(k)) i \sin(2\pi kx) dk = \int_{-\infty}^{\infty} a(k) \sin(2\pi kx) dk$$

Spatial vs. Frequency Domain

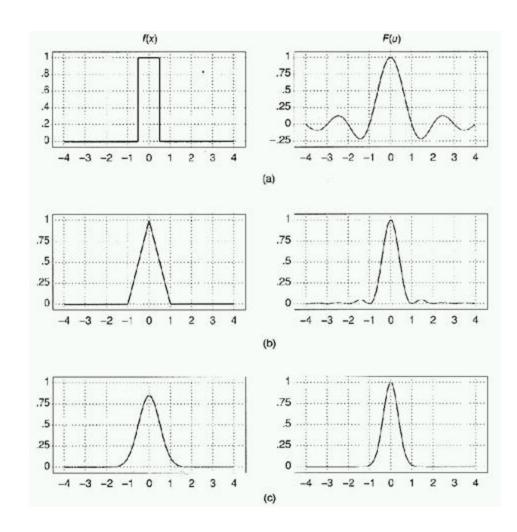
Important basis functions:

Box ↔ (normalized) sinc

$$\operatorname{sinc}(x) = \frac{\sin(x\pi)}{x\pi}$$
$$\operatorname{sinc}(0) = 1$$

$$\int \operatorname{sinc}(x) dx = 1$$

- Negative values
- Infinite support
- Tent \leftrightarrow sinc²
 - Tent == Convolution of box function with itself
- Gaussian ↔ Gaussian
 - Inverse width

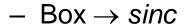


Spatial vs. Frequency Domain

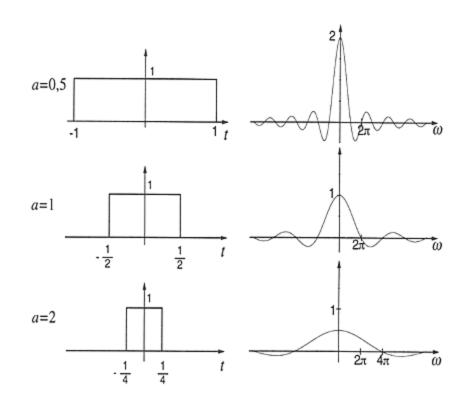
- Transform behavior
- Example: Fourier transform of a box function

$$\operatorname{rect}(at) \circ - \bullet \frac{1}{|a|} \operatorname{si} \left(\frac{\omega}{2a} \right).$$

Wide box → narrow sinc



Narrow box → wide sinc



Fourier Transformation

Periodic in space ⇔ discrete in frequency (vice ver.)

 Any periodic, continuous function can be expressed as the sum of an (infinite) number of sine or cosine waves:

$$f(x) = \Sigma_k a_k \sin(2\pi^* k^* x) + b_k \cos(2\pi^* k^* x)$$

Any finite interval can be made periodic by concatenating with itself

Decomposition of signal into different frequency bands: Spectral Analysis

- Frequency band: k
 - k = 0 : mean value
 - k = 1: function period, lowest possible frequency
 - k = 1.5? : not possible, periodic function, e.g. f(x) = f(x+1)
 - k_{max} ? : band limit, no higher frequency present in signal
- Fourier coefficients: a_k , b_k (real-valued, as before)
 - Even function f(x) = f(-x): $a_k = 0$
 - Odd function f(x) = -f(-x): $b_k = 0$

Fourier Synthesis Example

Square wave: periodic, uneven function

$$f(x) = 0.5 \quad \forall \ 0 < (x \ mod \ 2\pi) < \pi$$

$$= -0.5 \quad \forall \ \pi < (x \ mod \ 2\pi) < 2\pi$$

$$a_k = \int \sin(2\pi kx) f(x) \, dx \quad f(x) = \sum_k a_k \sin(2\pi kx)$$
•\a_0 = 0
•\a_1 = 1 \quad \sin(x) \quad \quad \quad \quad \sin(3x) \quad \quad

Discrete Fourier Transform

Equally-spaced function samples (N samples)

- Function values known only at discrete points, e.g.
 - Idealized physical measurements
 - Pixel positions in an image!
 - Represented via sum of Delta distribution (Fourier integrals → sums)

Fourier analysis

$$a_k = \sum_{i} \sin\left(\frac{2\pi ki}{N}\right) f_i$$

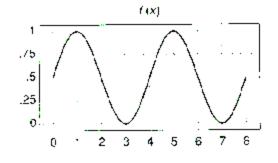
$$b_k = \sum_{i} \cos\left(\frac{2\pi ki}{N}\right) f_i$$

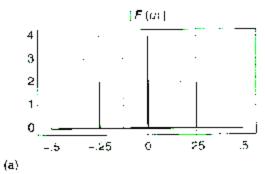
- Sum over all N measurement points
- -k = 0, 1, 2, ...? Highest possible frequency?
 - Nyquist frequency: highest frequency that can be represented
 - Defined as 1/2 the sampling frequency
 - Sampling rate *N*: determined by image resolution (pixel size)
 - 2 samples / period ↔ 0.5 cycles per pixel ⇒ k_{max} ≤ N / 2

Spatial vs. Frequency Domain

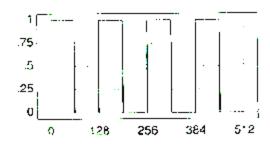
Examples (pixels vs. cycles per pixel)

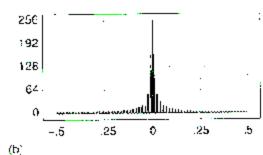
 Sine wave with positive offset



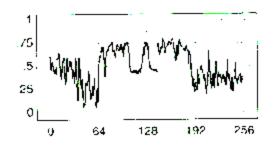


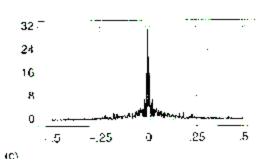
Square wave with offset





Scanline of an image

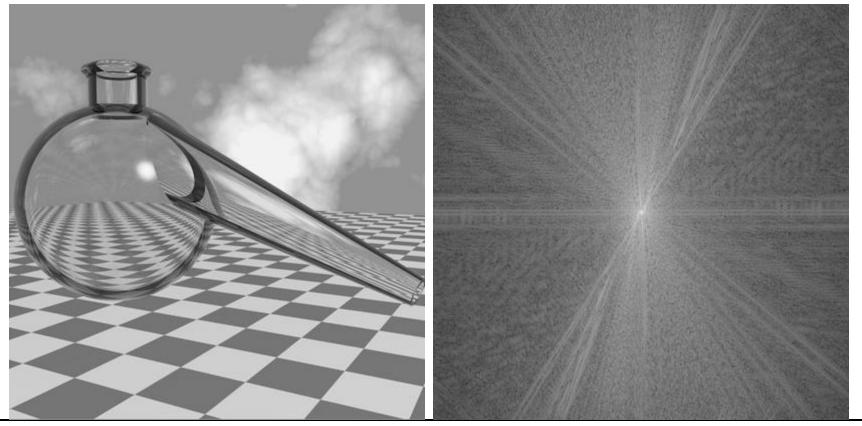




2D Fourier Transform

- 2 separate 1D Fourier transformations along x and y directions
- Discontinuous edge

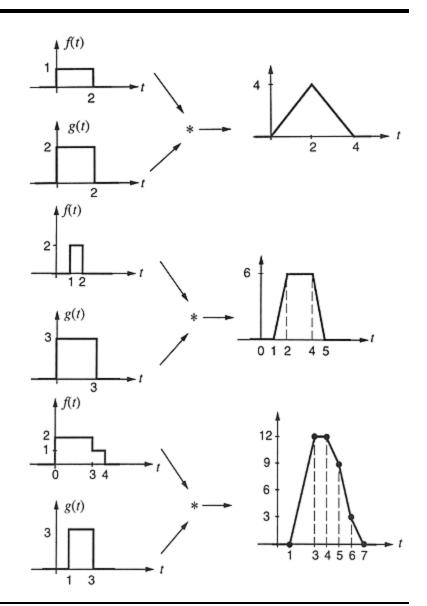
 Iine in orthogonal direction in Fourier domain!



Convolution

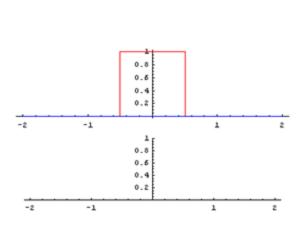
$$(f \otimes g)(x) = \int_{-\infty}^{\infty} f(\tau)g(x - \tau)d\tau$$

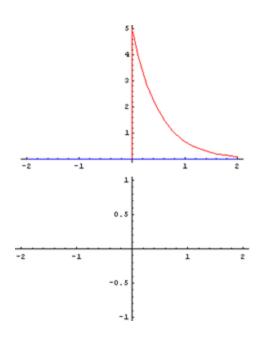
- Two functions f, g
- Shift one (reversed) function against the other by x
- Multiply function values
- Integrate across overlapping region
- Numerical convolution: expensive operation
 - For each x: integrate over non-zero domain



Convolution

Examples





Convolution Theorem

- Convolution in image domain
 - → Multiplication in Fourier domain
- Convolution in Fourier domain
 - → Multiplication in image domain
- Multiplication in transformed Fourier domain may be cheaper than direct convolution in image domain!

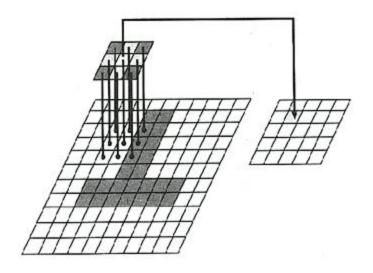
Convolution and Filtering

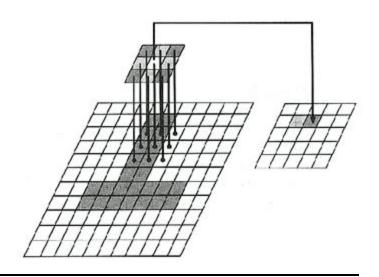
Technical realization

- In image domain
- Pixel mask with weights

Problems (e.g. sinc)

- Large filter support
 - Large mask
 - A lot of computation
- Negative weights
 - Negative light?





Filtering

Ideal low-pass filter

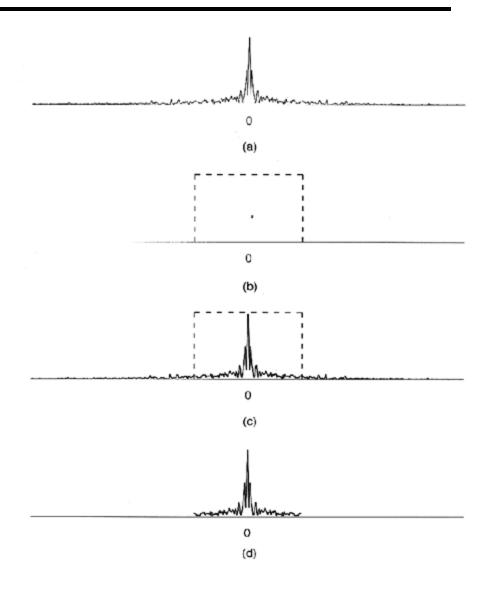
- Multiplication with box in frequency domain
- Convolution with sinc in spatial domain

Ideal high-pass filter

- Multiplication with (1 box) in frequency domain
- Only high frequencies

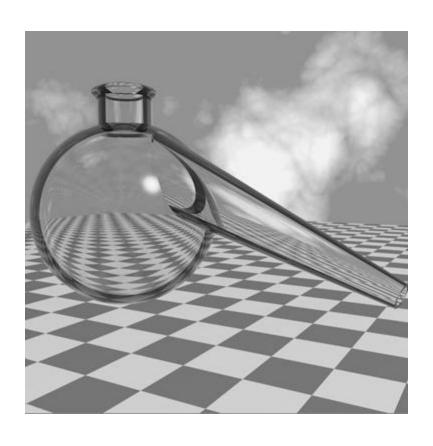
Ideal band-pass filter

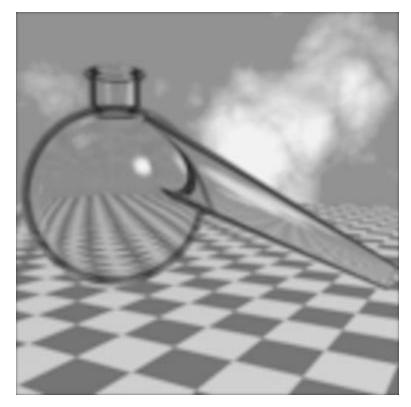
- Combination of wide low-pass and narrow high-pass filter
- Only intermediate frequencies



Low-Pass Filtering

• "Blurring"





High-Pass Filtering

- Enhances discontinuities in image
 - Useful for edge detection

