Computer Graphics

- Texturing -

Philipp Slusallek Pascal Grittmann

Overview

Last time

- Shading
- BRDFs

• Today

- Texture definition
- Image textures
- Procedural textures
- Texture mapping

Next lecture

- Alias & signal processing

Texture

- Textures modify the input for shading computations
 - Either via (painted) images textures or procedural functions

• Example texture maps for

Reflectance, normals, shadow reflections, …

Definition: Textures

Texture maps texture coordinates to shading values

- Input: 1D/2D/3D texture coordinates
 - Explicitly given or derived via other data (e.g. position, direction, ...)
- Output: Scalar or vector value

Modified values in shading computations

- Reflectance
 - Changes the diffuse or specular reflection coefficient (k_d, k_s)
- Geometry and Normal (important for lighting)
 - Displacement mapping $P' = P + \Delta P$
 - Normal mapping $N' = N + \Delta N$
 - Bump mapping N' = N(P + tN)
- Opacity
 - Modulating transparency (e.g. for fences in games)
- Illumination
 - Light maps, environment mapping, reflection mapping

IMAGE TEXTURES

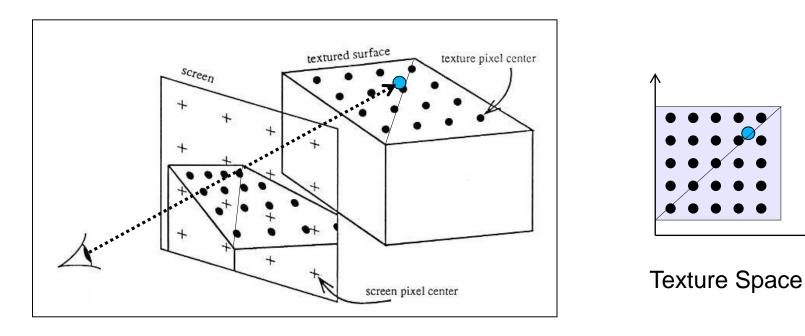
Reconstruction Filter

Image texture

- Discrete set of sample values (given at texel centers!)
- In general
 - Hit point does not exactly hit a texture sample

Still want to reconstruct a continuous function

- Use reconstruction filter to find color for hit point



Nearest Neighbor

Local Coordinates

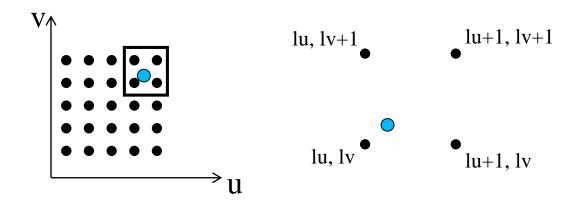
- Assuming cell-centered samples
- u = tu * resU;
- -v = tv * resV;

Lattice Coordinates

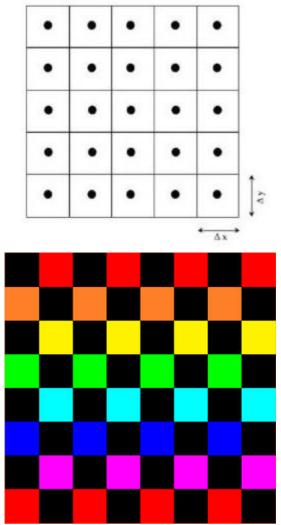
- $Iu = min(\lfloor u \rfloor, resU 1);$
- $Iv = min(\lfloor v \rfloor, resV 1);$

Texture Value

return image[lu, lv];



Pixel centred registration



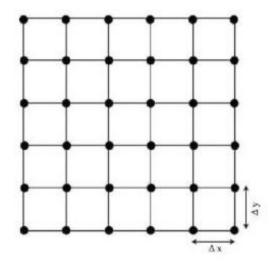
Bilinear Interpolation

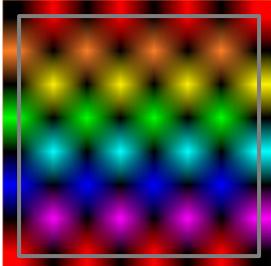
Local Coordinates

- Assuming node-centered samples
- u = tu * (resU 1);
- v = tv * (resV 1);
- Fractional Coordinates
 - $fu = u \lfloor u \rfloor;$ - fv = v - $\lfloor v \rfloor;$

Texture Value

Grid node registration

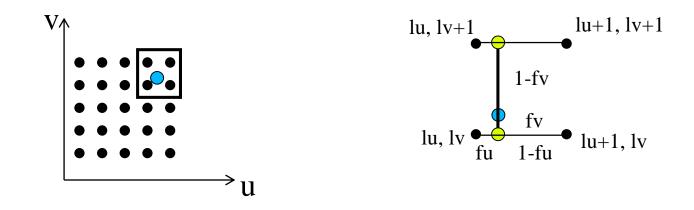




Bilinear Interpolation

Successive Linear Interpolations

- $u0 = (1-fv) \text{ image}[\lfloor u \rfloor , \lfloor v \rfloor]$ + (fv) image[$\lfloor u \rfloor , \lfloor v \rfloor$ +1];
- $u1=(1-fv) image[\lfloor u \rfloor+1, \lfloor v \rfloor]$ + (fv) image[$\lfloor u \rfloor+1, \lfloor v \rfloor+1$];
- return (1-fu) u0 + (fu) u1;



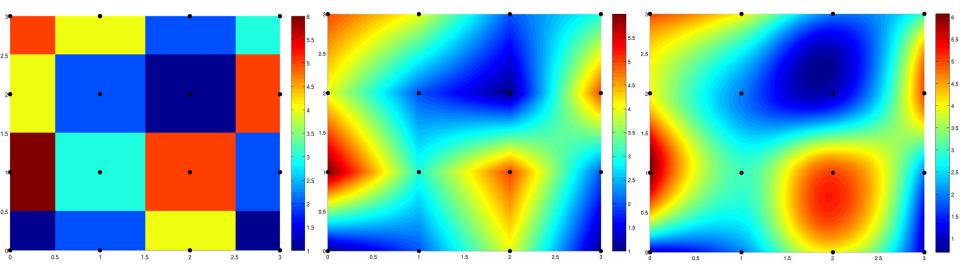
Nearest vs. Bilinear Interpolation

GL_NEAREST

GL_LINEAR

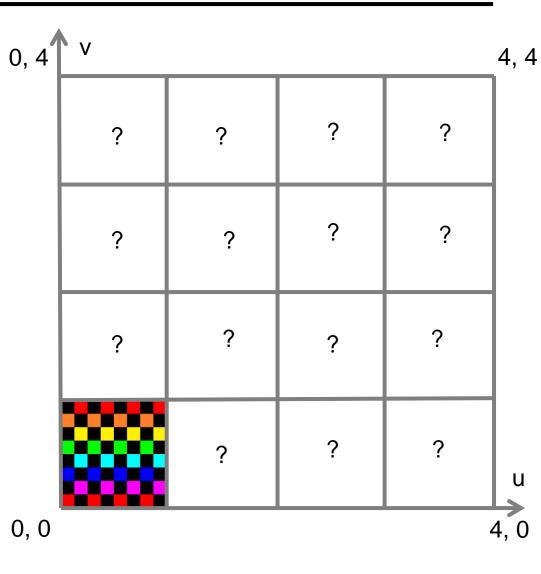
Bicubic Interpolation

- Properties
 - Assuming node-centered samples
 - Essentially based on cubic splines (see later)
- Pros
 - Even smoother
- Cons
 - More complex & expensive (4x4 kernel)
 - Overshoot



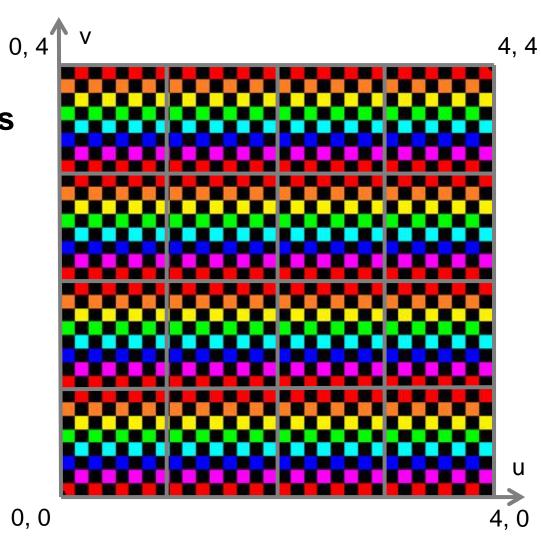
- Texture Coordinates

 (u, v) in [0, 1] x [0, 1]
- What if?
 - (u, v) not in unit square?



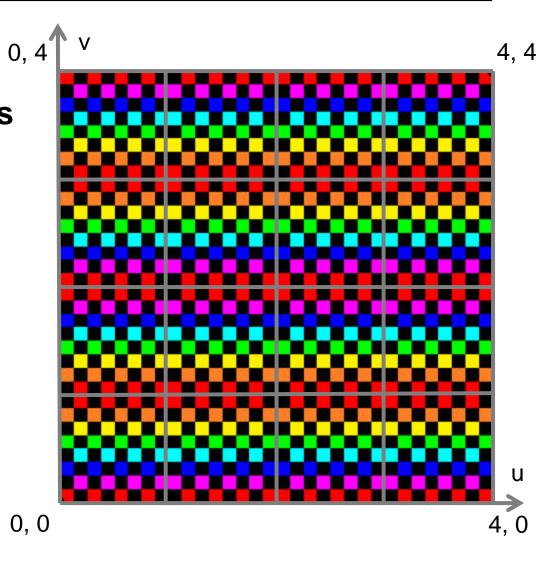
- Repeat
- Fractional Coordinates

$$- t_u = u - \lfloor u \rfloor$$
$$- t_v = v - \lfloor v \rfloor$$

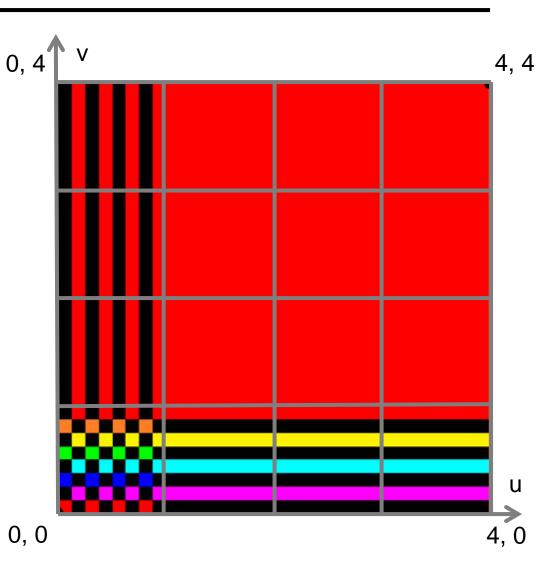


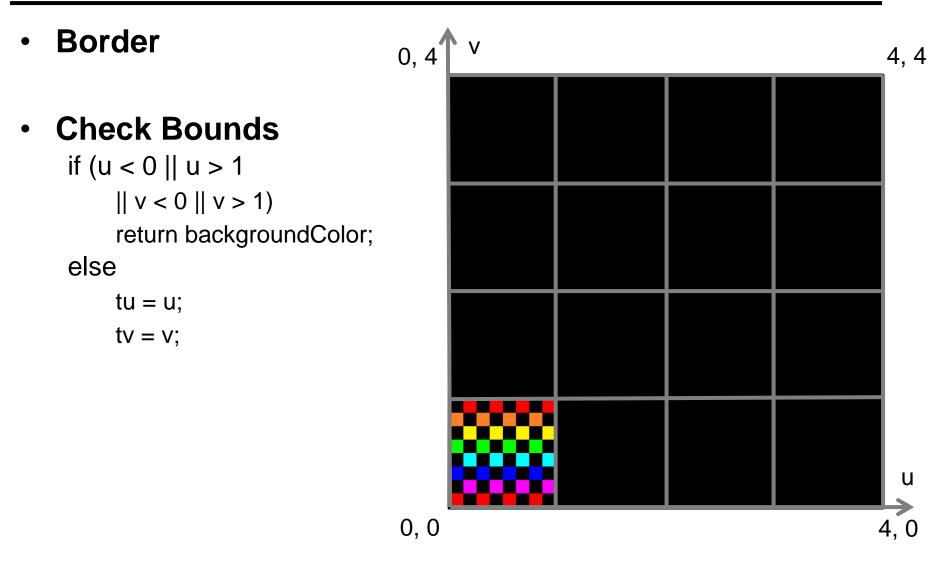
- Mirror
- Fractional Coordinates
 - $t_u = u \lfloor u \rfloor$ $t_v = v \lfloor v \rfloor$
- Lattice Coordinates

 l_u = [*u*]
 l_v = [*v*]
- Mirror if Odd



- Clamp
- Clamp u to [0, 1]
 if (u < 0) tu = 0;
 else if (u > 1) tu = 1;
 else tu = u;
- Clamp v to [0, 1]
 if (v < 0) tv = 0;
 else if (v > 1) tv = 1;
 else tv = v;





Comparison

- With OpenGL texture modes

GL_REPEAT

GL_MIRRORED_REPEAT

GL_CLAMP_TO_EDGE

GL_CLAMP_TO_BORDER

Discussion: Image Textures

Pros

- Simple generation
 - Painted, simulation, ...
- Simple acquisition
 - Photos, videos

Cons

- Illumination "frozen" during acquisition
- Limited resolution
- Susceptible to aliasing
- High memory requirements (often HUGE for films, 100s of GB)
- Issues when mapping 2D image onto 3D object

PROCEDURAL TEXTURES

Discussion: Procedural Textures

Cons

- Sometimes hard to achieve specific effect
- Possibly non-trivial programming

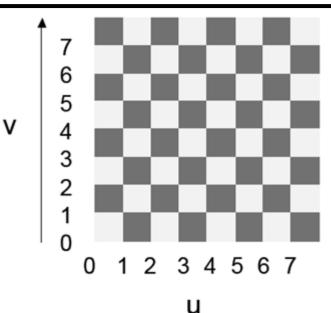
Pros

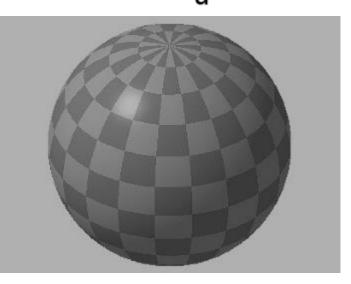
- Flexibility & parametric control
- Unlimited resolution
- Anti-aliasing possible
- Low memory requirements
- May be directly defined as 3D "image" mapped to 3D geometry
- Low-cost visual complexity

2D Checkerboard Function

- Lattice Coordinates

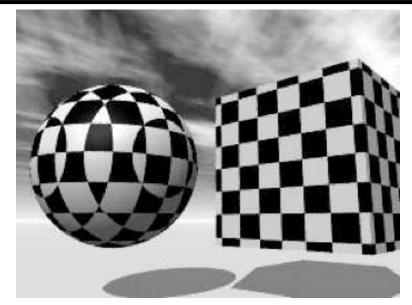
 lu = Lu⊥
 lv = Lv⊥
- Compute Parity
 parity = (lu + lv) % 2;
- Return Color
 - if (parity == 1)
 - return color1;
 - else
 - return color0;



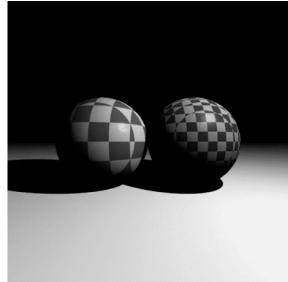


3D Checkerboard - Solid Texture

- Lattice Coordinates
 - $Iu = \lfloor u \rfloor$ $Iv = \lfloor v \rfloor$
 - Iw $= \lfloor w \rfloor$
- Compute Parity
 - parity = (lu + lv + lw) % 2;



- Return Color
 - if (parity == 1)
 - return color1;
 - else
 - return color0;



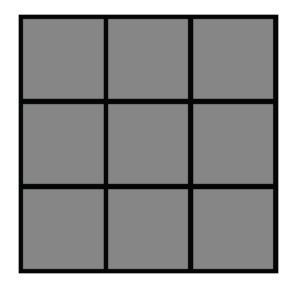
Tile

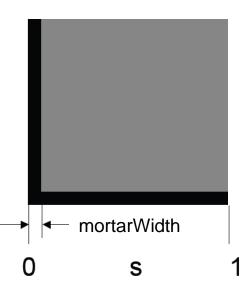
Fractional Coordinates fu = u - Lu⊥ fv = v - |v|

- Compute Booleans
 - bu = fu < mortarWidth;</pre>
 - bv = fv < mortarWidth;</p>

Return Color

- if (bu || bv)
 - return mortarColor;
- else
 - return tileColor;





Brick

Shift Column for Odd Rows

- parity = $\lfloor v \rfloor$ % 2;
- u -= parity * 0.5;

Fractional Coordinates

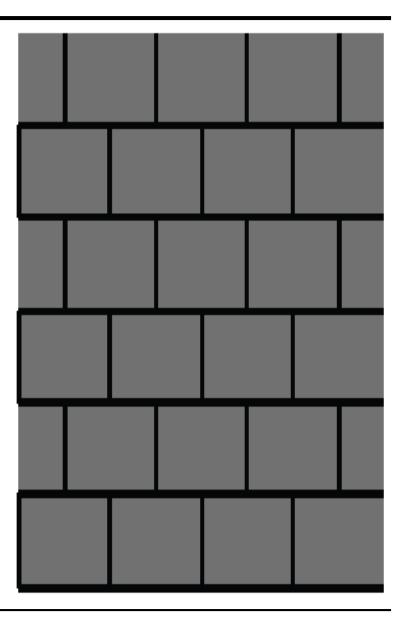
- $fu = u \lfloor u \rfloor$
- $fv = v \lfloor v \rfloor$

Compute Booleans

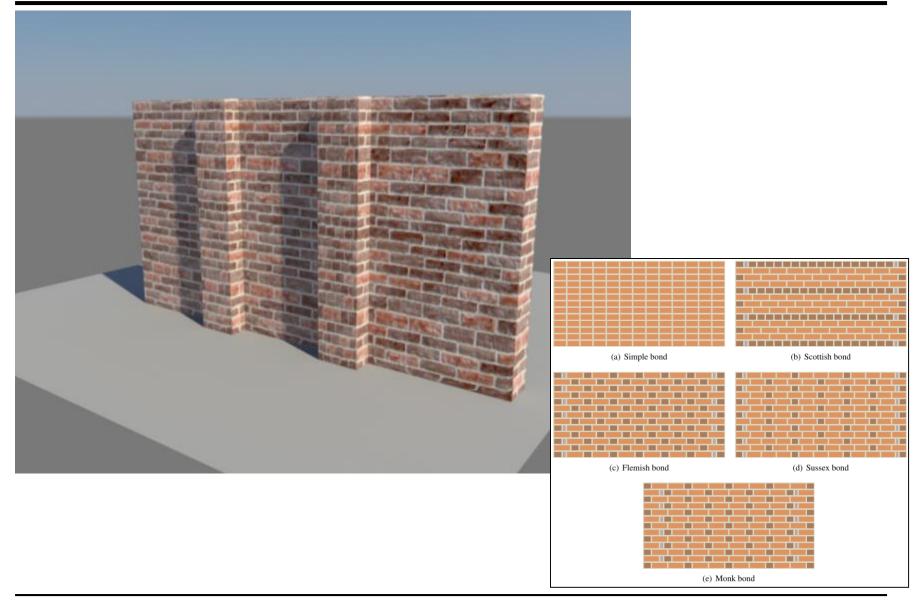
- bu = fu < mortarWidth;</p>
- bv = fv < mortarWidth;</p>

Return Color

- if (bu || bv)
 - return mortarColor;
- else
 - return brickColor;



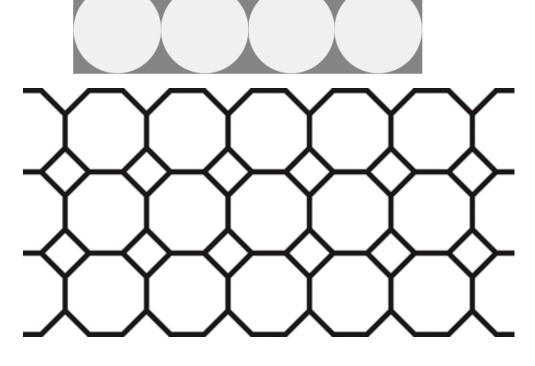
More Variation



Other Patterns

Circular Tiles

Octagonal Tiles



• Use your imagination!

Perlin Noise

Natural Patterns

- Similarity between patches at different locations
 - Repetitiveness, coherence (e.g. skin of a tiger or zebra)
- Similarity on different resolution scales
 - Self-similarity
- But never completely identical
 - Additional disturbances, turbulence, noise

Mimic Statistical Properties

- Purely empirical approach
- Looks convincing, but has nothing to do with material's physics

• Perlin Noise is essential for adding "natural" details

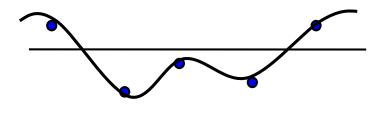
- Used in many texture functions

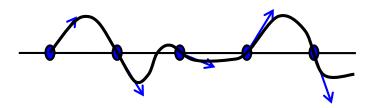
Perlin Noise

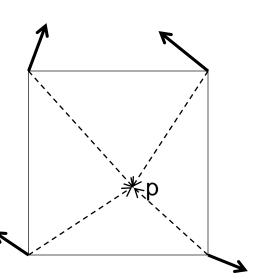
Natural Fractals

Noise Function

- Noise(x, y, z)
 - Statistical invariance under rotation
 - Statistical invariance under translation
 - Roughly fixed frequency of ~1 Hz
- Integer Lattice (i, j, k)
 - Value noise
 - Random value at lattice points
 - Gradient noise
 - Random gradient vector at lattice point
 - Interpolation
 - Bi-/tri-linear or cubic (Hermite spline, \rightarrow later)
 - Hash function to map vertices to values
 - Randomized look up
 - Virtually infinite extent and variation with finite array of values







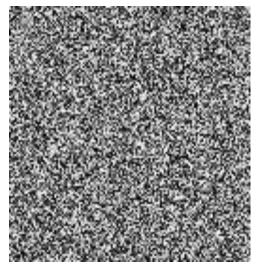
Noise vs. Noise

Value Noise vs. Gradient Noise

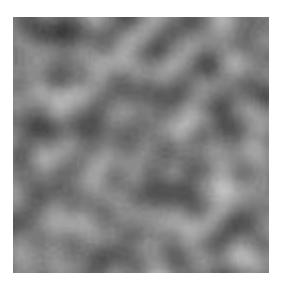
- Gradient noise has lower regularity artifacts
- More high frequencies in noise spectrum

Random Values vs. Perlin Noise

- Stochastic vs. deterministic



Random values at each pixel



Gradient noise

Turbulence Function

Noise Function

- Single spike in frequency spectrum (single frequency, see later)

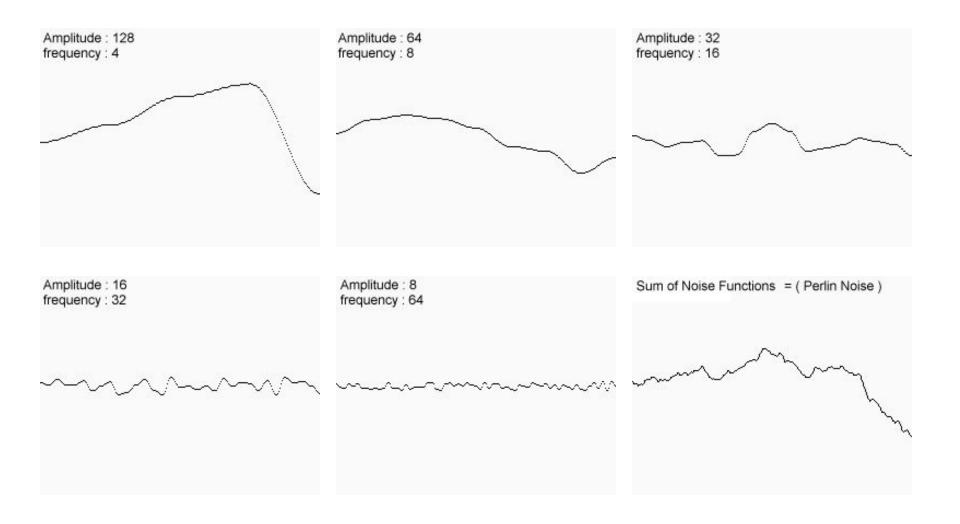
Natural Textures

- Mix of different frequencies
- Decreasing amplitude for high frequencies

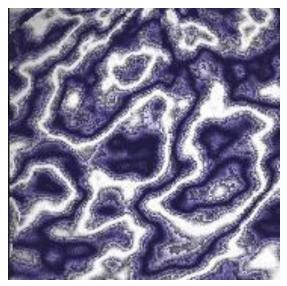
Turbulence from Noise

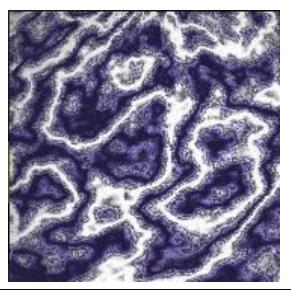
- $Turbulence(x) = \sum_{i=0}^{k} |a_i * noise(f_i x)|$
 - Frequency: $f_i = 2^i$
 - Amplitude: $a_i = 1 / p^i$
 - Persistence: *p* typically *p=2*
 - Power spectrum : $a_i = 1 / f_i$
 - Brownian motion: $a_i = 1 / f_i^2$
- Summation truncation
 - 1st term: noise(x)
 - 2nd term: noise(2x)/2
 - ...
 - Until period $(1/f_k) < 2$ pixel-size (band limit, see later)

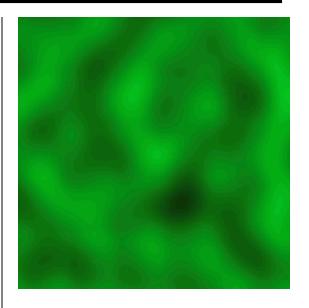
Synthesis of Turbulence (1-D)

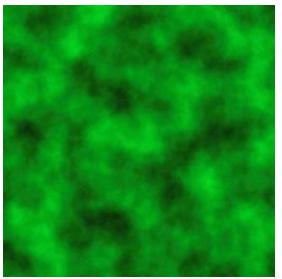


Synthesis of Turbulence (2-D)









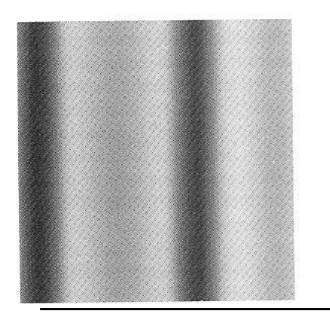
Example: Marble

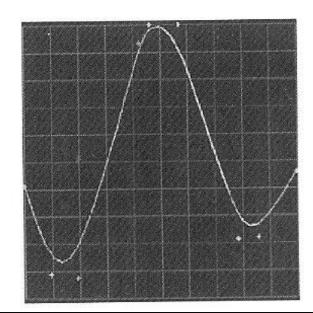
Overall Structure

- Smoothly alternating layers of different marble colors
- $f_{marble}(x,y,z) := marble_color(sin(x))$
- marble_color : transfer function (see lower left)

Realistic Appearance

- Simulated turbulence
- f_{marble}(x,y,z) := marble_color(sin(x + turbulence(x, y, z)))





Solid Noise

• 3D Noise Texture

- Wood
- Erosion
- Marble
- Granite
- ...

Other Applications

Bark

Turbulated saw-tooth function

Clouds

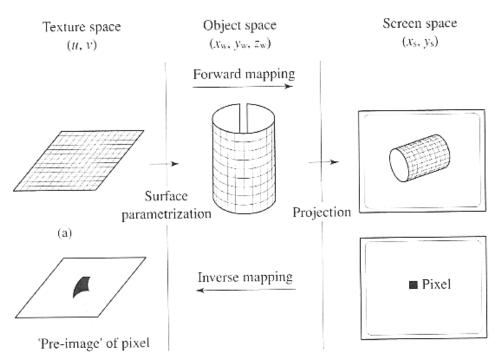
- White blobs
- Turbulated transparency along edge

Animation

- Vary procedural texture function's parameters over time

TEXTURE MAPPING

2D Texture Mapping



Forward mapping

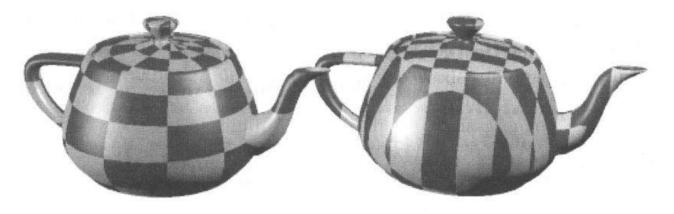
- Object surface parameterization
- Projective transformation

Inverse mapping

- Find corresponding pre-image/footprint of each pixel in texture
- Integrate over pre-image

Surface Parameterization

- To apply textures we need 2D coordinates on surfaces
 - \rightarrow Parameterization
- Some objects have a natural parameterization
 - Sphere: spherical coordinates (φ , θ) = ($2\pi u$, πv)
 - Cylinder: cylindrical coordinates (φ , h) = (2 π u, H v)
 - Parametric surfaces (such as B-spline or Bezier surfaces \rightarrow later)
- Parameterization is less obvious for
 - Polygons, implicit surfaces, teapots, ...



Triangle Parameterization

- Triangle is a planar object
 - Has implicit parameterization (e.g. barycentric coordinates)
 - But we need more control: Placement of triangle in texture space
- Assign texture coordinates (u,v) to each vertex (x_o,y_o,z_o)
- Apply viewing projection $(x_o, y_o, z_o) \rightarrow (x, y)$ (details later)
- Yields full texture transformation (warping) $(u,v) \rightarrow (x,y)$

$$x = \frac{au + bv + c}{gu + hv + i} \qquad \qquad y = \frac{du + ev + f}{gu + hv + i}$$

In homogeneous coordinates (by embedding (u,v) as (u,v,1))

$$\begin{bmatrix} x'\\y'\\w \end{bmatrix} = \begin{bmatrix} a & b & c\\d & e & f\\g & h & i \end{bmatrix} \begin{bmatrix} u'\\v'\\q \end{bmatrix}; (x, y) = \left(\frac{x'}{w}, \frac{y'}{w}\right), (u, v) = \left(\frac{u'}{q}, \frac{v'}{q}\right)$$

- Transformation coefficients determined by 3 pairs $(u,v) \rightarrow (x,y)$
 - Three linear equations
 - Invertible iff neither set of points is collinear

Triangle Parameterization (2)

• **Given**
$$\begin{bmatrix} x' \\ y' \\ w \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} u' \\ v' \\ q \end{bmatrix}$$

• The inverse transform $(x,y) \rightarrow (u,v)$ is

[u']		ei – fh	ch — bi ai — cg bg — ah	bf - ce	[x']
v'	=	fg – di	ai - cg	cd – af	y'
q		dh - eg	bg - ah	ae – bd	$\lfloor_W \rfloor$

- Coefficients must be calculated for each triangle
 - Rasterization
 - Incremental bilinear update of (u', v', q) in screen space
 - Using the partial derivatives of the linear function (i.e. constants)
 - Ray tracing
 - Evaluated at every intersection (via barycentric coordinates)
- Often (partial) derivatives are needed as well
 - Explicitly given in matrix (colored for $\partial u/\partial x$, $\partial v/\partial x$, $\partial q/\partial x$)

Textures Coordinates

Solid Textures

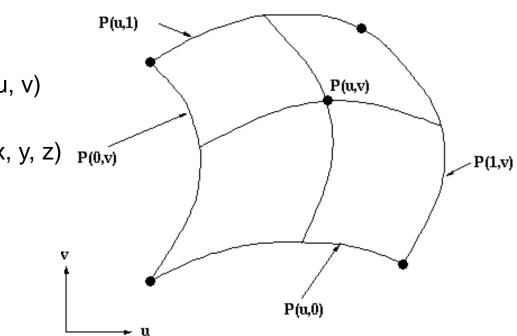
- 3D world/object (x,y,z) coords \rightarrow 3D (u,v,w) texture coordinates
- Similar to carving object out of material block

2D Textures

- 3D Cartesian (x,y,z) coordinates \rightarrow 2D (u,v) texture coordinates?

Definition (more detail later)

- Surface defined by parametric function
 - (x, y, z) = p(u, v)
- Input
 - Parametric coordinates: (u, v)
- Output
 - Cartsesian coordinates: (x, y, z) P(0,v)

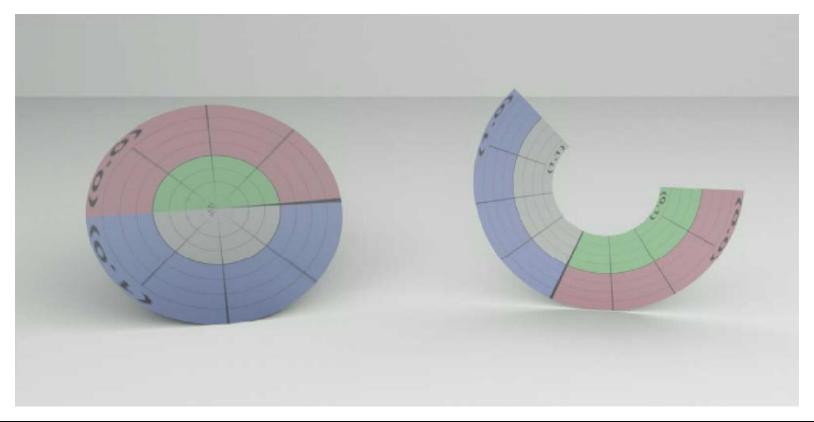


Texture Coordinates

- Directly derived from surface parameterization
- Invert parametric function
 - From world coordinates to parametric coordinates
 - Usually computed implicitly anyway (e.g. in ray tracing)

Polar Coordinates

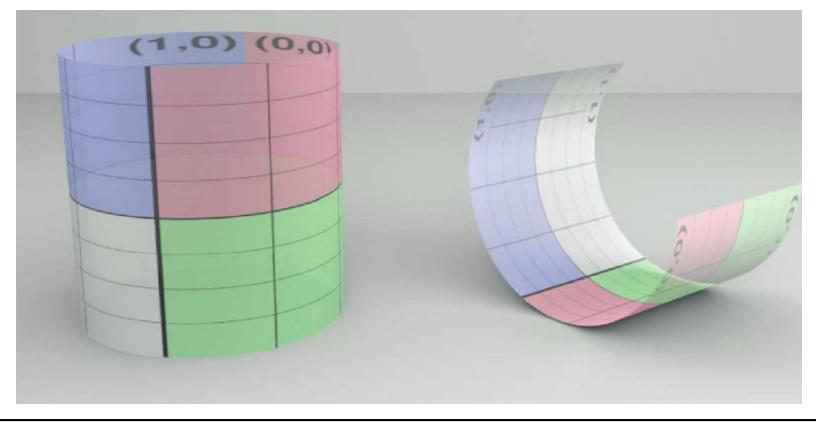
- (x, y, 0) = Polar2Cartesian(r, ϕ)
- Disc
 - $p(u, v) = Polar2Cartesian(R v, 2 \pi u) // disc radius R$



Object space

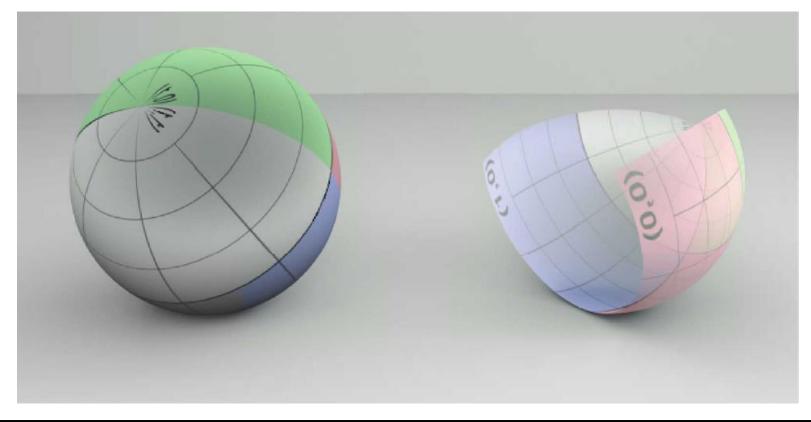
Texture space

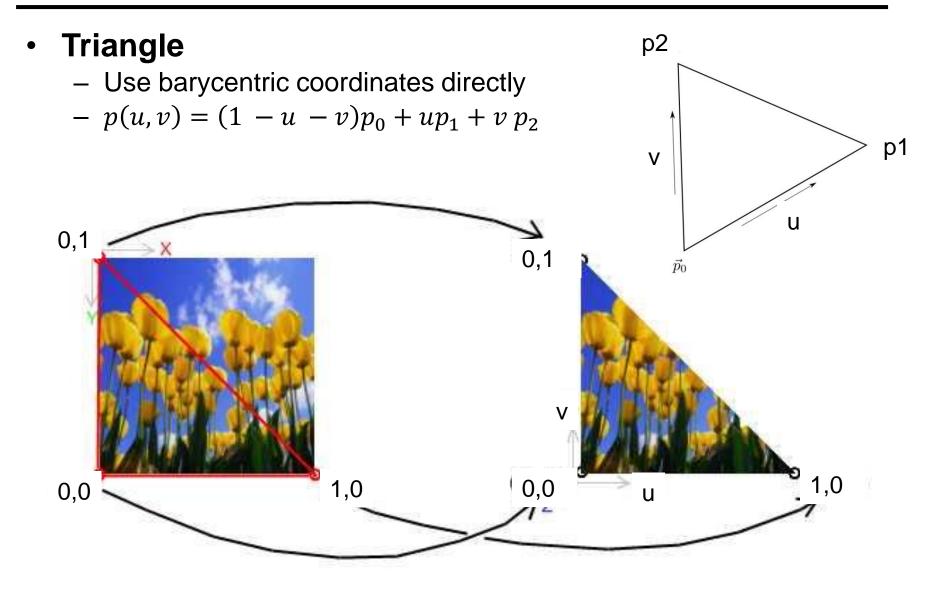
- Cylindrical Coordinates
 - (x, y, z) = Cylindrical2Cartesian(r, ϕ , z)
- Cylinder
 - $p(u, v) = Cylindrical2Cartesian(r, 2 \pi u, H v)$ // cylinder height H



Spherical Coordinates

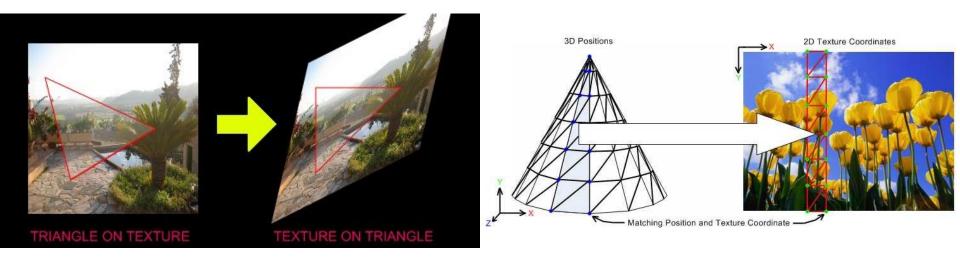
- (x, y, z) = Spherical2Cartesian(r, θ , ϕ)
- Sphere
 - $p(u, v) = Spherical2Cartesian(r, \pi v, 2 \pi u)$





Triangle Mesh

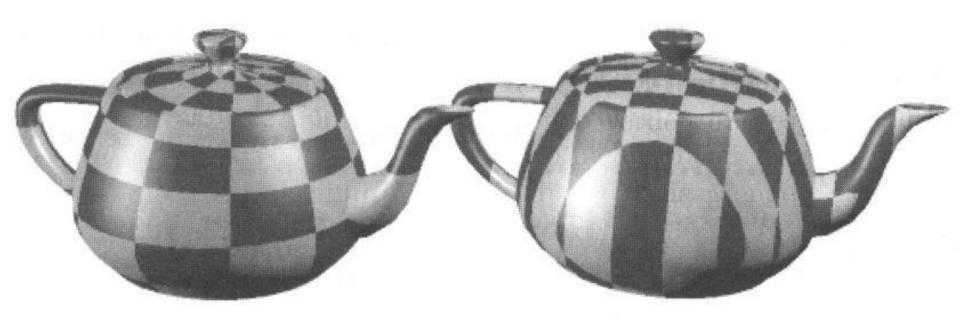
- Associate a predefined texture coordinate to each triangle vertex
 - Interpolate texture coordinates using barycentric coordinates
 - $u = \lambda_0 p_{0u} + \lambda_1 p_{1u} + \lambda_2 p_{2u}$
 - $v = \lambda_0 p_{0v} + \lambda_1 p_{1v} + \lambda_2 p_{2v}$
- Texture mapped onto manifold
 - Single texture shared by many triangles



Surface Parameterization

Other Surfaces

– No intrinsic parameterization??

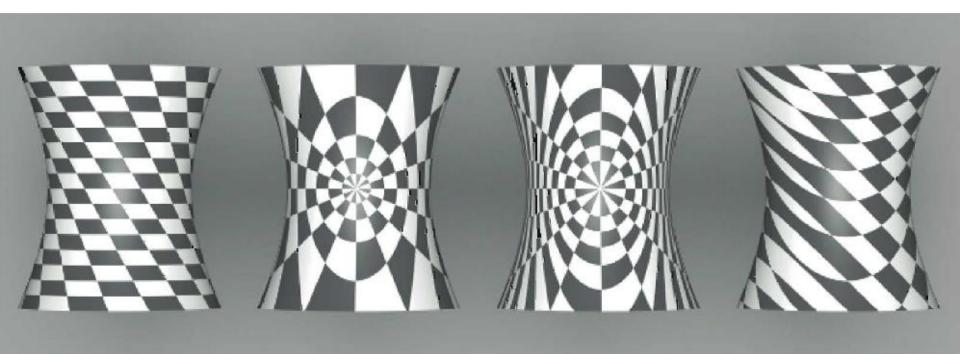


Coordinate System Transform

- Express Cartesian coordinates into a given coordinate system

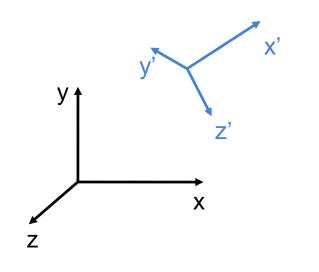
3D to 2D Projection

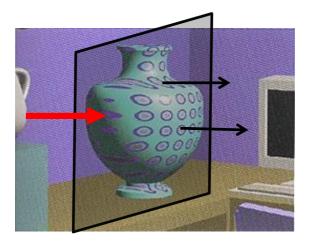
- Drop one coordinate
- Compute u and v from remaining 2 coordinates



Planar Mapping

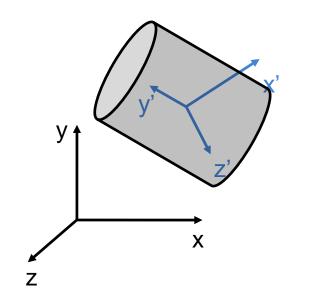
- Map to different Cartesian coordinate system
- (x', y', z') = AffineTransformation(x, y, z)
 - Orthogonal basis: translation + row-vector rotation matrix
 - Non-orthogonal basis: translation + inverse column-vector matrix
- Drop z', map u = x', map v = y'
- E.g.: Issues when surface normal orthogonal to projection axis

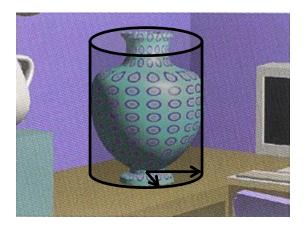




Cylindrical Mapping

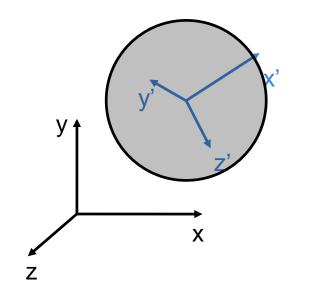
- Map to cylindrical coordinates (possibly after translation/rotation)
- $(r, \phi, z) = Cartesian2Cylindrical(x, y, z)$
- Drop r, map u = ϕ / 2 π , map v = z / H
- Extension: add scaling factors: u = $\alpha \phi / 2 \pi$
- E.g.: Similar topology gives reasonable mapping

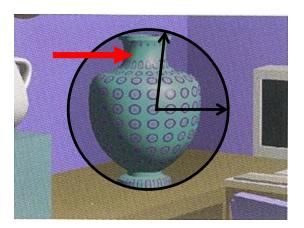




Spherical Mapping

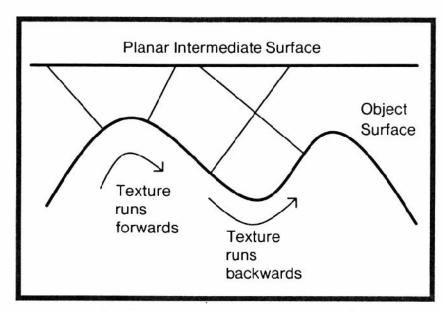
- Map to spherical coordinates (possibly after translation/rotation)
- $(r, \theta, \phi) = Cartesian2Spherical(x, y, z)$
- Drop r, map u = ϕ / 2 π , map v = θ / π
- Extension: add scaling factors to both u and v
- E.g.: Issues in concave regions





Two-Stage Mapping: Problems

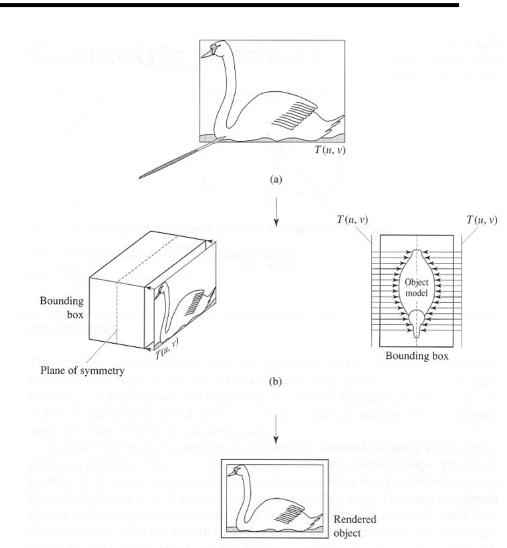
- Problems
 - May introduce undesired texture distortions if the intermediate surface differs too much from the destination surface
 - Still often used in practice because of its simplicity



Surface concavities can cause the texture pattern to reverse if the object normal mapping is used.

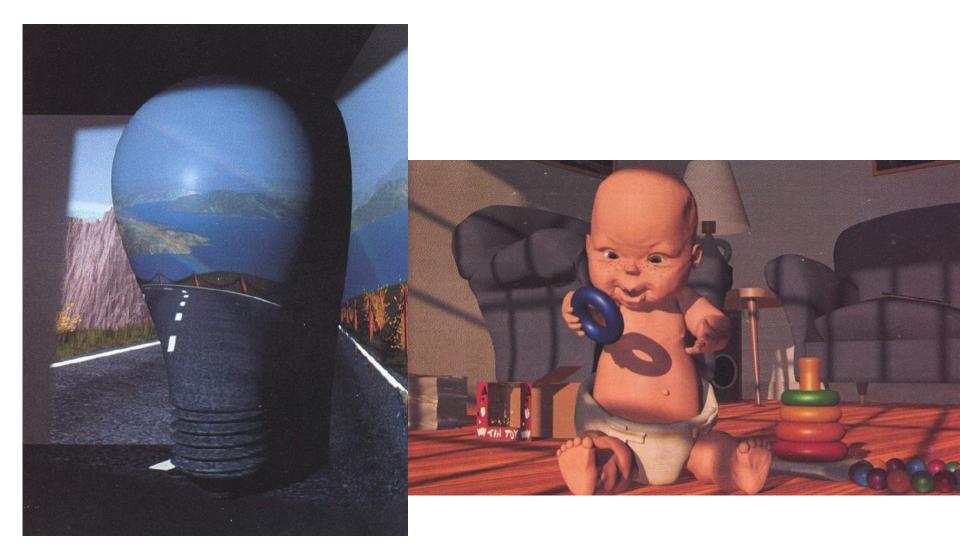
Projective Textures

- Project texture onto object surfaces
 - Slide projector
- Parallel or perspective projection
- Use photographs (or drawings) as textures
 - Used a lot in film industry!
- Multiple images
 - View-dependent texturing (advanced topic)
- Perspective Mapping
 - Re-project photo on its 3D environment



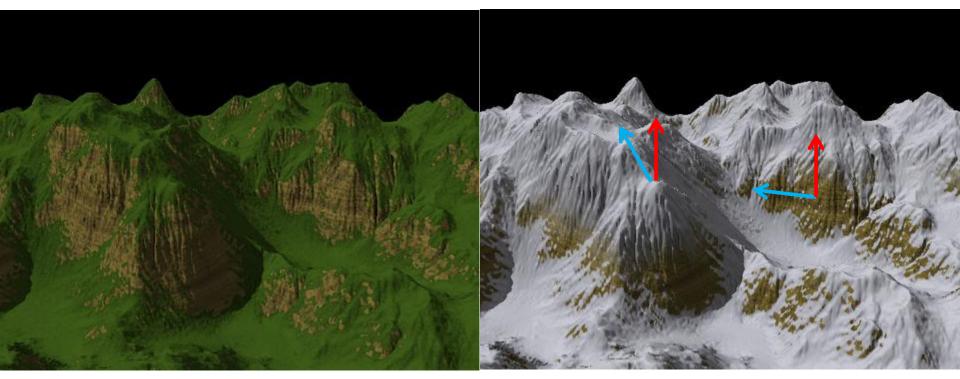
(c)

Projective Texturing: Examples



Slope-Based Mapping

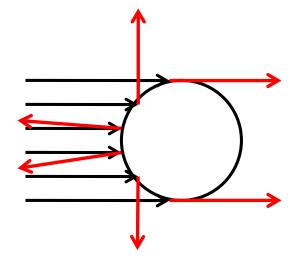
- Definition
 - Depends on surface normal and predefined vector
- Example
 - $\alpha = n \omega$
 - return α flatColor + (1 α) slopeColor;



Environment Map

Spherical Map

- Photo of a reflective sphere (gazing ball)
- Photos with a fish-eye camera
 - Only gives hemi-sphere mapping



Environment Map

Latitude-Longitude Map

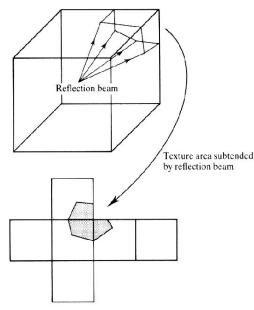
- Remapping 2 images of reflective sphere
- Photo with an environment camera

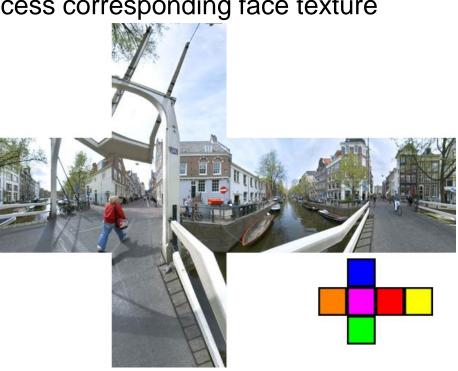
Algorithm

- If no intersection found, use ray direction to find background color
- Cartesian coords of ray dir. \rightarrow spherical coords \rightarrow uv tex coords

Environment Map

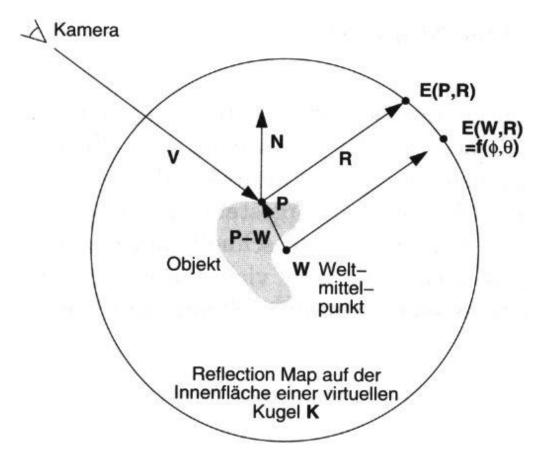
- Cube Map
 - Remapping 2 images of reflective sphere
 - Photos with a perspective camera
- Algorithm
 - Find main axis (-x, +x, -y, +y, -z, +z) of ray direction
 - Use other 2 coordinates to access corresponding face texture
 - Akin to a 90° projective light





Reflection Map Rendering

- Spherical parameterization
- O-mapping using reflected view ray intersection



63

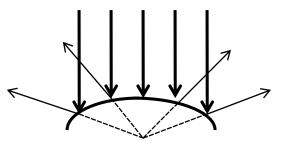
Reflection Map Parameterization

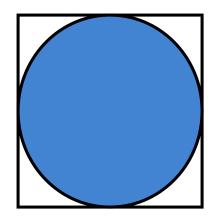
Spherical mapping

- Single image
- Bad utilization of the image area
- Bad scanning on the edge
- Artifacts, if map and image do not have the same view point

Double parabolic mapping

- Yields spherical parameterization
- Subdivide in 2 images (front-facing and back-facing sides)
- Less bias near the periphery
- Arbitrarily reusable
- Supported by OpenGL extensions





Reflection Mapping Example

Terminator II motion picture

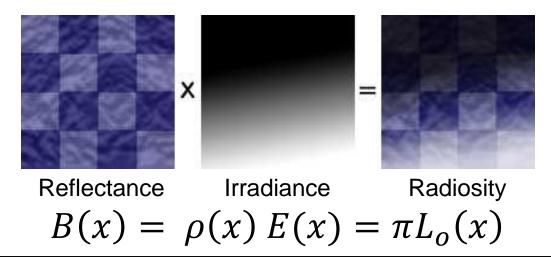
Reflection Mapping Example II

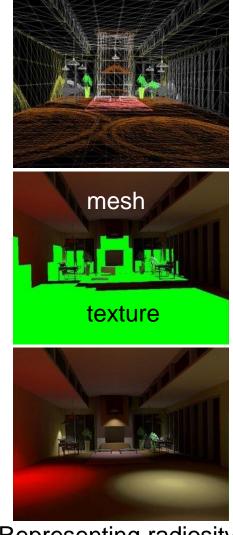
Reflection mapping with Phong reflection

- Two maps: diffuse & specular
- Diffuse: index by surface normal
- Specular: indexed by reflected view vector

Light Maps

- Light maps (e.g. in Quake)
 - Pre-calculated illumination (local irradiance)
 - Often very low resolution: smoothly varying
 - Multiplication of irradiance with base texture
 - Diffuse reflectance only
 - Provides surface radiosity
 - View-independent out-going radiance
 - Animated light maps
 - Animated shadows, moving light spots, etc...

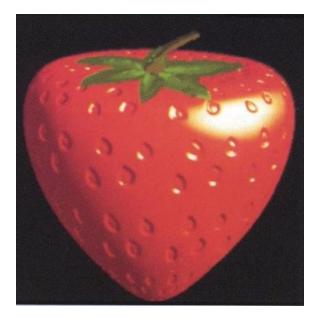


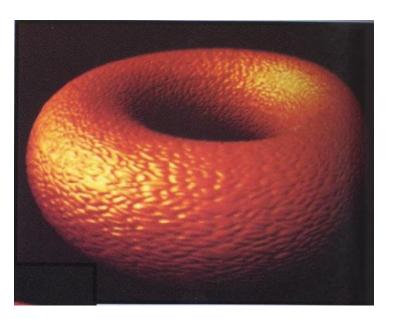


Representing radiosity in a mesh or texture

Bump Mapping

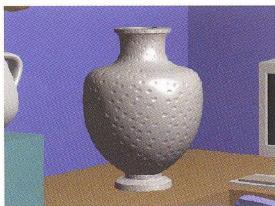
- Modulation of the normal vector
 - Surface normals changed only
 - Influences shading only
 - No self-shadowing, contour is not altered

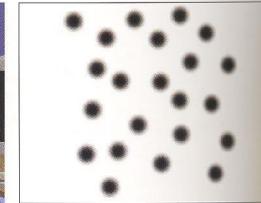




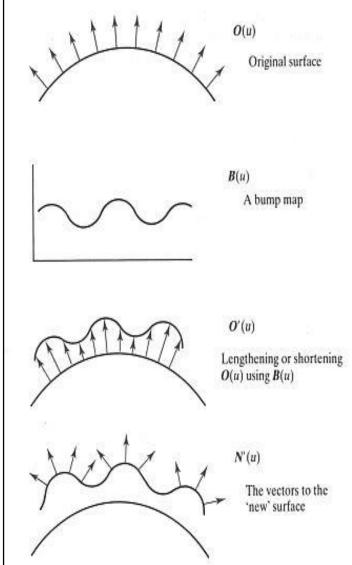
Bump Mapping

- Original surface: O(u, v)
 - Surface normals are known
- Bump map: $B(u, v) \in \mathbb{R}$
 - Surface is offset in normal direction according to bump map intensity
 - New normal directions N'(u, v) are calculated based on virtually displaced surface O'(u, v)
 - Original surface is rendered with new normals N'(u, v)





Grey-valued texture used for bump height



Bump Mapping

Displaced surface:

O'(u, v) = O(u, v) + B(u, v) N(u, v)

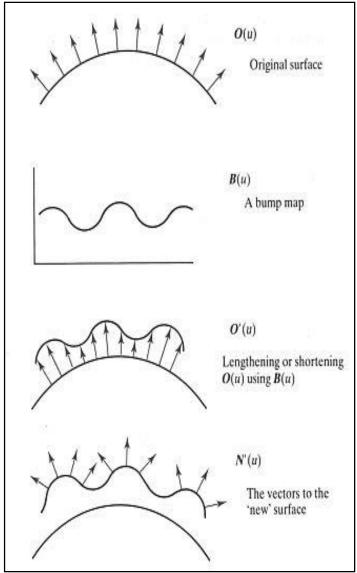
- Computing the normal:
 - Normal is cross-product of derivatives: $N'(u, v) = O'_u \times O'_v$
 - Where:

 $O'_u = O_u + B_u N + \frac{BN_u}{O_v}$ $O'_v = O_v + B_v N + \frac{BN_v}{O_v}$

- If *B* is small the last term in each equation can be ignored, yielding:

 $N'(u, v) = O_u \times O_v + B_u(N \times O_v) + B_v(O_u \times N) + B_u B_v(N \times N)$

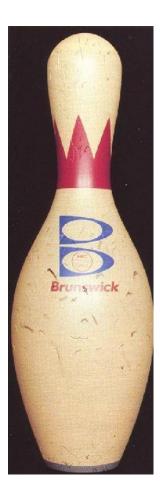
- The first term is the normal to the surface and the last is zero, giving: $D = B_u(N \times O_v) - B_v(N \times O_u)$ N' = N + D



Texture Examples

Complex optical effects

- Combination of multiple texture effects



RenderMan Companion

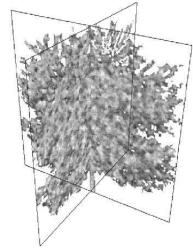
Billboards

Single textured polygons

- Often with opacity texture
- Rotates, always facing viewer
- Used for rendering distant objects
- Best results if approximately radially or spherically symmetric

Multiple textured polygons

- Azimuthal orientation: different view-points
- Complex distribution: trunk, branches, …



 L_{∞}

View direction