
Philipp Slusallek

Computer Graphics

- Spatial Index Structures -

Motivation
• Tracing rays in O(n) is too expensive

– Need hundreds of millions rays per second

– Scenes consist of millions of triangles

• Reduce complexity through pre-sorting data
– Spatial index structures

• Dictionaries of objects in 3D space

– Eliminate intersection candidates as early as possible

• Can reduce complexity to O(log n) on average

– Worst case complexity is still O(n)

• Private exercise: Come up with a worst case example

Acceleration Strategies
• Faster ray-primitive intersection algorithms

– Does not reduce complexity, “only” a constant factor (but relevant!)

• Less intersection candidates
– Spatial indexing structures
– (Hierarchically) partition space or the set of objects
– Examples

• Grids, hierarchies of grids

• Octrees

• Binary space partitions (BSP) or kd-trees

• Bounding volume hierarchies (BVH)

– Directional partitioning (not very useful)
– 5D partitioning (space and direction, once a big hype)

• Close to pre-compute visibility for all points and all directions

• Tracing of continuous bundles of rays
– Exploits coherence of neighboring rays, amortize cost among them

• Frustum tracing, cone tracing, beam tracing, ...

Aggregate Objects
• Object that holds groups of objects

• Conceptually stores bounding box and
list of children

• Useful for instancing (placing collection of objects
repeatedly) and for Bounding Volume Hierarchies

pointers

Bounding Volumes
• Observation

– BVs (tightly) bound geometry, ray must intersect BV first
– Only compute intersection if ray hits BV

• Sphere
– Very fast intersection computation

– Often inefficient because too large

• Axis-aligned bounding box (AABB)
– Very simple intersection computation (min-max)
– Sometimes too large

• Non-axis-aligned box
– A.k.a. „oriented bounding box (OBB)“
– Often better fit
– Fairly complex computation

• Slabs
– Pairs of half spaces
– Fixed number of orientations/axes: e.g. x+y, x-y, etc.

• Pretty fast computation

Bounding Volume Hierarchies (BVHs)

• Definition
– Hierarchical partitioning of a set of objects

• BVHs form a tree structure
– Each inner node stores a volume enclosing all sub-trees

– Each leaf stores a volume and pointers to objects

– All nodes are aggregate objects

– Usually every object appears once in the tree

• Except for instancing

Bounding Volume Hierarchies (BVHs)

• Hierarchy of groups of objects

BVH traversal (1)
• Accelerate ray tracing

– By eliminating intersection candidates

• Traverse the tree
– Consider only objects in leaves intersected by the ray

BVH traversal (2)
• Accelerate ray tracing

– By eliminating intersection candidates

• Traverse the tree
– Consider only objects in leaves intersected by the ray

BVH traversal (3)
• Accelerate ray tracing

– By eliminating intersection candidates

• Traverse the tree
– Consider only objects in leaves intersected by the ray

– Cheap traversal instead of costly intersection

Object vs. Space Partitioning
• Object partitioning

– BVHs hierarchical partition objects into groups

– Create spatial index by spatially bounding each subgroup

– Subgroups may be overlapping !

• Space partitioning
– (Hierarchically) partitions space in subspaces

– Subspaces are non-overlapping and completely fill parent space

– Organize them in a structure (tree or table)

• Next: Space partitioning

Uniform Grids
• Definition

– Regular partitioning of space into equal-size cells

– Non-hierarchical structure

• Resolution
– Want: number of cells in 𝑂(𝑛)

– Resolution in each dimension proportional to 3 𝑛

– Usually 𝑅𝑥,𝑦,𝑧 = 𝑑𝑥,𝑦,𝑧
3 𝜆𝑛

𝑉

• d: diagonal of box (a vector)

• n: #objects

• V: volume of Bbox

• : density (user-defined)

Uniform Grid Traversal
• Grids are cheap to traverse

– 3D-DDA, modified Bresenham algorithm (see later)

– Step through the structure cell by cell

– Intersect with primitives inside non-empty cells

• Mailboxing
– Single primitive can be referenced

in many cells

– Avoid multiple intersections

– Keep track of intersection tests

• Per-object cache of ray IDs

– Problem with concurrent access

• Per-ray cache of object IDs

– Data local to a ray (better!)

Nested Grids
• Problem: „Teapot in a stadium”

– Uniform grids cannot adapt to local density of objects

• Nested Grids
– Hierarchy of uniform grids: Each cell is itself a grid

– Fast algorithms for building & traversal (Kalojanov et al. ́ 09,´11)

Cells of uniform grid

(colored by # of intersection tests)
Same for two-level grid

Irregular Grids
• Irregular grids can accel traversal [Perard-Gayot´17]

– Build grid (hierarchical) base grid (power of 2, adapts to scene)

• Base grid defines minimum resolution for computation

– Neighboring cells can be merged (eagerly)

• As long as no change in set of primitives

– Can also expand cells (for exit operations)

• As long as neighbors contain
only subset of cells primitives

• Allows for making larger steps

– Approach needs more memory

15

Construction (merge & expand)

Traversal (simplified)

8 steps 5 steps 4 steps

Octrees and Quadtrees
• Octree

– Hierarchical space partitioning (“simplest hierarchical grid”)

– Each inner node contains 8 (2x2x2 grid) equally sized voxels

• Quadtree
– 2D “octree”

• Adaptive subdivision
– Adjust depth to local scene complexity

BSP Trees
• Definition

– Binary Space Partition Tree (BSP)

– Recursively split space with planes

• Arbitrary split positions

• Arbitrary orientations

• Used for visibility computation
– E.g. in games (Doom)

– Enumerating objects
in back to front order

kD-Trees
• Definition

– Axis-Aligned Binary Space Partition Tree

– Recursively split space with axis-aligned planes

• Arbitrary split positions

• Greatly simplifies/accelerates computations

kD-Tree Example (1)

kD-Tree Example (2)

A

A

kD-Tree Example (3)

A

A

B

B

kD-Tree Example (4)

A

A

B

B

L2L1

kD-Tree Example (5)

A

A

B

B

L2L1

C

C

kD-Tree Example (6)

A

A

B

B

L2L1

C

C

D

D

L3

kD-Tree Example (7)

A

A

B

B

L2L1

C

C

D

D

L3

L4 L5

kD-Tree Traversal
• “Front-to-back” traversal

– Traverse child nodes in order along rays

• Termination criterion
– Traversal can be terminated as soon as surface intersection is

found in the current node

• Maintain stack of sub-trees still to traverse
– More efficient than recursive function calls

– Algorithms with no or limited stacks are also available (for GPUs)

kD-Tree Traversal (1)

A

A

B

B

L2L1

C

C

D

D

L3

L4 L5

Current:

Stack:

A

kD-Tree Traversal (2)

A

A

B

B

L2L1

C

C

D

D

L3

L4 L5

Current:

Stack:

B

C

kD-Tree Traversal (3)

A

A

B

B

L2L1

C

C

D

D

L3

L4 L5

Current:

Stack:

L2

C

kD-Tree Traversal (4)

A

A

B

B

L2L1

C

C

D

D

L3

L4 L5

Current:

Stack: C

kD-Tree Traversal (5)

A

A

B

B

L2L1

C

C

D

D

L3

L4 L5

Current:

Stack:

C

kD-Tree Traversal (6)

A

A

B

B

L2L1

C

C

D

D

L3

L4 L5

Current:

Stack:

D

L3

kD-Tree Traversal (7)

A

A

B

B

L2L1

C

C

D

D

L3

L4 L5

Current:

Stack:

L4

L3L5

kD-Tree Traversal (8)

A

A

B

B

L2L1

C

C

D

D

L3

L4 L5

Current:

Stack: L3L5

kD-Tree Traversal (9)

A

A

B

B

L2L1

C

C

D

D

L3

L4 L5

Current: Result:

Stack: L3L5

kD-Tree Traversal (10)

A

A

B

B

L2L1

C

C

D

D

L3

L4 L5

Current: Result:

Stack: CANNOT terminate !!!L3L5

kD-Tree Traversal (11)

A

A

B

B

L2L1

C

C

D

D

L3

L4 L5

Current: Result:

Stack: CANNOT terminate !!!L3L5

kD-Tree Properties
• kD-Trees

– Split space instead of sets of objects
– Split into disjoint, fully covering regions

• Adaptive
– Can handle the “Teapot in a Stadium” well

• Compact representation
– Relatively little memory overhead per node
– Node stores:

• Split location (1D), child pointer (to both children),
Axis-flag (often merged into pointer)

• Can be compactly stored in 8 bytes

– But replication of objects in (possibly) many nodes
• Can greatly increase memory usage

• Cheap Traversal
– One subtraction, multiplication, decision, and fetch
– But many more cycles due to instruction dependencies

Overview: kD-Trees Construction

• Adaptive

• Compact

• Cheap traversal

Exploit Advantages
• Adaptive

– You have to build a good tree

• Compact
– At least use the compact node representation (8-byte)

– You can’t be fetching whole cache lines every time

• Cheap traversal
– No sloppy inner loops! (one subtract, one multiply!)

Building kD-trees
• Given:

– Axis-aligned bounding box (“cell”)

– List of geometric primitives (triangles?) touching cell

• Core operation:
– Pick an axis-aligned plane to split the cell into two parts

– Sift geometry into two batches (some redundancy)

– Recurse

Building kD-trees
• Given:

– Axis-aligned bounding box (“cell”)

– List of geometric primitives (triangles?) touching cell

• Core operation:
– Pick an axis-aligned plane to split the cell into two parts

– Sift geometry into two batches (some redundancy)

– Recurse

– Termination criteria!

“Intuitive” kD-Tree Building
• Split Axis

– Round-robin; largest extent

• Split Location
– Middle of extent; median of geometry (balanced tree)

• Termination
– Target # of primitives, limited tree depth

“Intuitive” kD-Tree Building
• Split Axis

– Round-robin; largest extent

• Split Location
– Middle of extent; median of geometry (balanced tree)

• Termination
– Target # of primitives, limited tree depth

• All of these techniques are NOT very clever

Building good kD-trees
• What split do we really want?

– Clever Idea: The one that makes ray tracing cheap

– Write down an expression of cost and minimize it

➔ Cost Optimization

• What is the cost of tracing a ray through a cell?
– Surface Area Heuristic (SAH)

• Cost of traversal of the inner node itself, plus

• Relative probability of hitting one child, times

• Cost of hitting that child

• Same for other child

Cost(cell) = C_trav + Prob(hit L) * Cost(L) + Prob(hit R) * Cost(R)

Splitting with Cost in Mind

Split in the middle

• Makes the L & R probabilities equal

• Pays no attention to the L & R costs

Split at the Median

• Makes the L & R costs equal

• Pays no attention to the L & R probabilities

Cost-Optimized Split

• Automatically and rapidly isolates complexity

• Produces large chunks of empty space

Building good kD-trees
• Need the probabilities

– Turns out to be proportional to surface area (SA)

– Not the volume

• Need the child cell costs
– Simple triangle count works great (very rough approx.)

– Many attempts to improve this did not work out

Cost(c) = C_trav + Prob(hit L) * Cost(L) + Prob(hit R) * Cost(R)

= C_trav + SA(L)/SA(c) * TriCount(L) + SA(R)/SA(c) * TriCount(R)

Termination Criteria
• When should we stop splitting?

– Another clever idea: When splitting does not help any more.

– Use the cost estimates in your termination criteria

• Threshold of cost improvement
– But stretch decision over multiple levels, to avoid local minima

• Threshold of cell size
– Absolute (!) probability so small there is no point in going on

Building good kD-trees
• Basic build algorithm

– Pick an axis, or optimize across all three

– Build a set of candidate split locations

• Based on BBox of triangles (in/out events) or

• Predefined locations (fixed number of bins across bbox axis)

– Sort the triangle events or bin them

– Walk through candidates to find minimum cost split

• Characteristics of the tree you’re looking for
– Deep and thin

– Typical depth of 50-100,

– About 2 triangles per leaf,

– Big empty cells

Building kD-trees quickly
• Very important to build good trees first

– Otherwise you have no basis for comparison

• Don’t give up cost optimization!
– Use the math, Luke…

• Luckily, lots of flexibility…
– Axis picking (“hack” pick vs. full optimization)

– Candidate picking (bboxes, exact; binning, sorting)

– Termination criteria (“knob” controlling tradeoff)

Building kD-trees quickly
• Remember, profile first! Where’s the time going?

– Split personality

• Memory traffic all at the top (NO cache misses at bottom)

– Sifting through bajillion triangles to pick one split (!)

– Hierarchical building?

• Computation mostly at the bottom

– Lots of leaves, need more exact candidate info

– Lazy building?

• Change criteria during the build?

Fast Ray Tracing w/ kD-Trees
• Adaptive

– Build a cost-optimized kD-tree w/ the surface area heuristic

• Compact

• Cheap traversal

What’s in a node?
• A kD-tree internal node needs:

– Am I a leaf?

– Split axis

– Split location

– Pointers to children

Compact (8-byte) Nodes
• kD-Tree node can be packed into 8 bytes

– Split location

• 32 bit float

– Always two children, put them side-by-side

• Only one 32-bit pointer

– Leaf flag + Split axis

• 2 bits

Compact (8-byte) Nodes
• kD-Tree node can be packed into 8 bytes

– Split location

• 32 bit float

– Always two children, put them side-by-side

• Only one 32-bit pointer

– Leaf flag + Split axis

• 2 bits

• So close! Sweep those 2 bits under the rug…
– Encode bits in lowest 2 bits of pointer

– Bits are not used as structure is multiple of 8, anyway

No Bounding Box!
• kD-Tree node corresponds to an AABB

• Does not mean it has to *contain* one
– Would be 24 bytes: 4X explosion (!)

Memory Layout
• Cache lines are much bigger than 8 bytes!

– Advantage of compactness lost with poor layout

• Pretty easy to do something reasonable
– Building depth first, watching memory allocator

Other Data
• Memory should be separated by rate of access

– Frames

– << Pixels

– << Samples [Ray Trees]

– << Rays [Shading (not quite)]

– << Triangle intersections

– << Tree traversal steps

• Example: pre-processed triangle, shading info…

Fast Ray Tracing w/ kD-Trees
• Adaptive

– Build a cost-optimized kD-tree w/ the surface area heuristic

• Compact
– Use an 8-byte node

– Lay out your memory in a cache-friendly way

• Cheap traversal

kD-Tree Traversal Operation
• Maintain on a stack

– Entry and exit distance to node (t_near and t_far)

• Three cases
– t_split > t_far: Go only to near node

– t_near < t_split < t_far Go to both (use stack)

– t_split < t_near Go only to far node

• Near and far depend on direction of ray!

kD-Tree Traversal: Inner Loop
Given (node, t_near, t_far)

while (! node.isLeaf())

{

t_at_split = (split_location - ray->origin[split_axis]) * ray->inv_dir[split_axis]

if (t_split <= t_min)

continue with (far child, t_split, t_far) // hit either far child or none

if (t_split >= t_max)

continue with (near child, t_min, t_split) // hit near child only

// hit both children

push (far child, t_split, t_max) onto stack

continue with (near child, t_min, t_split)

}

Optimize Your Inner Loop
• kD-Tree traversal is the most critical kernel

– It happens about a zillion times

– It’s tiny

– Sloppy coding will show up

• Optimize, Optimize, Optimize
– Remove recursion and minimize stack operations

– Other standard tuning & tweaking

Can it go faster?
• How do you make fast code go faster?

• Parallelize it!
– Not covered here

Directional Partitioning
• Applications

– Useful only for rays that start from a single point

• Camera

• Point light sources

– Preprocessing of visibility

– Requires scan conversion of geometry

• For each object locate where it is visible

• Expensive and linear in # of objects

• Generally not used for primary rays

• Variation: Light buffer (for shadow rays)
– Lazy and conservative evaluation

– Store last found occluder in
directional structure

– Test entry first for next shadow test

Ray Classification
• Partitioning of space and direction [Arvo & Kirk´87]

– Roughly pre-computes visibility for the entire scene

• What is visible from each point in each direction?

– Very costly preprocessing, cheap traversal

• Improper trade-off between preprocessing and run-time

– Memory hungry, even with lazy evaluation

– Seldom used in practice

Packet Tracing
• Approach

– Combine many similar rays (e.g. primary or shadow rays)

– Trace them together in SIMD fashion

• All rays perform the same traversal operations

• All rays intersect the same geometry

• Can use SIMD instructions in modern processors

– Exposes coherence between rays

• All rays touch similar spatial indices

• Loaded data can be reused (in registers & cache)

• More computation per recursion step → better optimization

– Overhead

• Rays will perform unnecessary operations

• Overhead low for coherent and small set of rays (e.g. up to 4x4 rays)

• Needs an API that provides coherent sets of rays

Beam Tracing

Beam and Cone Tracing
• General idea:

– Trace continuous bundles of rays

• Cone Tracing:
– Approximate collection of ray with cone(s)

– Subdivide into smaller cones if necessary

• Beam Tracing:
– Exactly represent a ray bundle with pyramid

– Create new beams at intersections (polygons)

• Problems:
– Clipping of beams?

– Good approximations?

– How to compute intersections?

• Not really practical !!

Frustum Tracing
• Bound set of rays with frustum (NOT frustrum!!)

– Only during traversal

– API needs to provide coherent groups of rays

• Possibly hierarchically

• Traverse spatial index with frustum
– Small overhead (largely avoided by SIMD)

• Compute with 4 corner rays

– Avoid traversing many rays individually

• Particularly beneficial in the upper levels of index

– Switch to (packets of) rays when needed (intersection)

• Might be able to only use subset (e.g. based on extend of triangle)

– Split frustum hierarchically and traverse separately in lower levels

• Avoids overhead of carrying to many rays into small nodes

• E.g. fast primary ray traversal by W. Hunt (Oculus)

72

Distribution Ray Tracing
• Formerly called Distributed Ray Tracing [Cook`84]

• Stochastic Sampling of
– Pixel: Antialiasing

– Lens: Depth-of-field

– BRDF: Glossy reflections

– Lights: Smooth shadows from
area light sources

– Time: Motion blur

• Covered in detail in RIS course

