Computer Graphics

- Spatial Index Structures -

Philipp Slusallek

Motivation

- Tracing rays in $O(n)$ is too expensive
- Need hundreds of millions rays per second
- Scenes consist of millions of triangles
- Reduce complexity through pre-sorting data
- Spatial index structures
- Dictionaries of objects in 3D space
- Eliminate intersection candidates as early as possible
- Can reduce complexity to $O(\log n)$ on average
- Worst case complexity is still $O(n)$
- Private exercise: Come up with a worst case example

Acceleration Strategies

- Faster ray-primitive intersection algorithms
- Does not reduce complexity, "only" a constant factor (but relevant!)
- Less intersection candidates
- Spatial indexing structures
- (Hierarchically) partition space or the set of objects
- Examples
- Grids, hierarchies of grids
- Octrees
- Binary space partitions (BSP) or kd-trees
- Bounding volume hierarchies (BVH)
- Directional partitioning (not very useful)
- 5D partitioning (space and direction, once a big hype)
- Close to pre-compute visibility for all points and all directions
- Tracing of continuous bundles of rays
- Exploits coherence of neighboring rays, amortize cost among them
- Frustum tracing, cone tracing, beam tracing, ...

Aggregate Objects

- Object that holds groups of objects
- Conceptually stores bounding box and list of children
- Useful for instancing (placing collection of objects repeatedly) and for Bounding Volume Hierarchies

Bounding Volumes

- Observation
- BVs (tightly) bound geometry, ray must intersect BV first
- Only compute intersection if ray hits BV
- Sphere
- Very fast intersection computation
- Often inefficient because too large
- Axis-aligned bounding box (AABB)
- Very simple intersection computation (min-max)
- Sometimes too large
- Non-axis-aligned box
- A.k.a. „oriented bounding box (OBB)"
- Often better fit
- Fairly complex computation
- Slabs
- Pairs of half spaces
- Fixed number of orientations/axes: e.g. $x+y, x-y$, etc.

- Pretty fast computation

Bounding Volume Hierarchies (BVHs)

- Definition
- Hierarchical partitioning of a set of objects
- BVHs form a tree structure
- Each inner node stores a volume enclosing all sub-trees
- Each leaf stores a volume and pointers to objects
- All nodes are aggregate objects
- Usually every object appears once in the tree
- Except for instancing

Bounding Volume Hierarchies (BVHs)

- Hierarchy of groups of objects

BVH traversal (1)

- Accelerate ray tracing
- By eliminating intersection candidates
- Traverse the tree
- Consider only objects in leaves intersected by the ray

BVH traversal (2)

- Accelerate ray tracing
- By eliminating intersection candidates
- Traverse the tree
- Consider only objects in leaves intersected by the ray

BVH traversal (3)

- Accelerate ray tracing
- By eliminating intersection candidates
- Traverse the tree
- Consider only objects in leaves intersected by the ray
- Cheap traversal instead of costly intersection

Object vs. Space Partitioning

- Object partitioning
- BVHs hierarchical partition objects into groups
- Create spatial index by spatially bounding each subgroup
- Subgroups may be overlapping !
- Space partitioning
- (Hierarchically) partitions spacein subspaces
- Subspaces are non-overlapping and completely fill parent space
- Organize them in a structure (tree or table)
- Next: Space partitioning

Uniform Grids

- Definition
- Regular partitioning of space into equal-size cells
- Non-hierarchical structure
- Resolution
- Want: number of cells in $O(n)$
- Resolution in each dimension proportional to $\sqrt[3]{n}$
- Usually $R_{x, y, z}=d_{x, y, z} \sqrt[3]{\frac{\lambda n}{V}}$
- d: diagonal of box (a vector)
- n: \#objects
- V: volume of Bbox
- λ : density (user-defined)

Uniform Grid Traversal

- Grids are cheap to traverse
- 3D-DDA, modified Bresenham algorithm (see later)
- Step through the structure cell by cell
- Intersect with primitives inside non-empty cells
- Mailboxing
- Single primitive can be referenced in many cells
- Avoid multiple intersections
- Keep track of intersection tests
- Per-object cache of ray IDs
- Problem with concurrent access
- Per-ray cache of object IDs
- Data local to a ray (better!)

Nested Grids

- Problem: „Teapot in a stadium"
- Uniform grids cannot adapt to local density of objects
- Nested Grids
- Hierarchy of uniform grids: Each cell is itself a grid
- Fast algorithms for building \& traversal (Kalojanov et al. '09,'11)

Cells of uniform grid
(colored by \# of intersection tests)

Same for two-level grid

Irregular Grids

- Irregular grids can accel traversal [Perard-Gayot'17]
- Build grid (hierarchical) base grid (power of 2, adapts to scene)
- Base grid defines minimum resolution for computation
- Neighboring cells can be merged (eagerly)
- As long as no change in set of primitives
- Can also expand cells (for exit operations)
- As long as neighbors contain only subset of cells primitives
- Allows for making larger steps
- Approach needs more memory

Traversal (simplified)

after expansion

Construction (merge \& expand)

initial bounding box

expand in y

expand in x

Octrees and Quadtrees

- Octree
- Hierarchical space partitioning ("simplest hierarchical grid")
- Each inner node contains 8 ($2 \times 2 \times 2$ grid) equally sized voxels
- Quadtree
- 2D "octree"
- Adaptive subdivision
- Adjust depth to local scene complexity

BSP Trees

- Definition
- Binary Space Partition Tree (BSP)
- Recursively split space with planes
- Arbitrary split positions
- Arbitrary orientations
- Used for visibility computation
- E.g. in games (Doom)
- Enumerating objects in back to front order

kD-Trees

- Definition
- Axis-Aligned Binary Space Partition Tree
- Recursively split space with axis-aligned planes
- Arbitrary split positions
- Greatly simplifies/accelerates computations

kD-Tree Example (1)

kD-Tree Example (2)

A

kD-Tree Example (3)

kD-Tree Example (4)

kD-Tree Example (5)

kD-Tree Example (6)

kD-Tree Example (7)

kD-Tree Traversal

- "Front-to-back" traversal
- Traverse child nodes in order along rays
- Termination criterion
- Traversal can be terminated as soon as surface intersection is found in the current node
- Maintain stack of sub-trees still to traverse
- More efficient than recursive function calls
- Algorithms with no or limited stacks are also available (for GPUs)

kD-Tree Traversal (1)

Stack:

kD-Tree Traversal (2)

kD-Tree Traversal (3)

kD-Tree Traversal (4)

kD-Tree Traversal (5)

kD-Tree Traversal (6)

kD-Tree Traversal (7)

kD-Tree Traversal (8)

kD-Tree Traversal (9)

kD-Tree Traversal (10)

C

Result: Δ
CANNOT terminate !!!

kD-Tree Traversal (11)

C
Current: $\triangle \Delta \quad$ Result: Δ
Stack: L5 L3
CANNOT terminate !!!

kD-Tree Properties

- kD-Trees
- Split space instead of sets of objects
- Split into disjoint, fully covering regions
- Adaptive
- Can handle the "Teapot in a Stadium" well
- Compact representation
- Relatively little memory overhead per node
- Node stores:
- Split location (1D), child pointer (to both children), Axis-flag (often merged into pointer)
- Can be compactly stored in 8 bytes
- But replication of objects in (possibly) many nodes
- Can greatly increase memory usage
- Cheap Traversal
- One subtraction, multiplication, decision, and fetch
- But many more cycles due to instruction dependencies

Overview: kD-Trees Construction

- Adaptive
- Compact
- Cheap traversal

Exploit Advantages

- Adaptive
- You have to build a good tree
- Compact
- At least use the compact node representation (8-byte)
- You can't be fetching whole cache lines every time
- Cheap traversal
- No sloppy inner loops! (one subtract, one multiply!)

Building kD-trees

- Given:
- Axis-aligned bounding box ("cell")
- List of geometric primitives (triangles?) touching cell
- Core operation:
- Pick an axis-aligned plane to split the cell into two parts
- Sift geometry into two batches (some redundancy)
- Recurse

Building kD-trees

- Given:
- Axis-aligned bounding box ("cell")
- List of geometric primitives (triangles?) touching cell
- Core operation:
- Pick an axis-aligned plane to split the cell into two parts
- Sift geometry into two batches (some redundancy)
- Recurse
- Termination criteria!

"Intuitive" kD-Tree Building

- Split Axis
- Round-robin; largest extent
- Split Location
- Middle of extent; median of geometry (balanced tree)
- Termination
- Target \# of primitives, limited tree depth

"Intuitive" kD-Tree Building

- Split Axis
- Round-robin; largest extent
- Split Location
- Middle of extent; median of geometry (balanced tree)
- Termination
- Target \# of primitives, limited tree depth
- All of these techniques are NOT very clever

Building good kD-trees

- What split do we really want?
- Clever Idea: The one that makes ray tracing cheap
- Write down an expression of cost and minimize it
\rightarrow Cost Optimization
- What is the cost of tracing a ray through a cell?
- Surface Area Heuristic (SAH)
$\operatorname{Cost}($ cell $)=$ C_trav $+\operatorname{Prob}\left(\right.$ hit L) ${ }^{*} \operatorname{Cost}(\mathrm{~L})+\operatorname{Prob}\left(\right.$ hit R) ${ }^{*} \operatorname{Cost}(\mathrm{R})$
- Cost of traversal of the inner node itself, plus
- Relative probability of hitting one child, times
- Cost of hitting that child
- Same for other child

Splitting with Cost in Mind

Split in the middle

- Makes the L \& R probabilities equal - Pays no attention to the L \& R costs

Split at the Median

- Makes the L \& R costs equal - Pays no attention to the L \& R probabilities

Cost-Optimized Split

- Automatically and rapidly isolates complexity
- Produces large chunks of empty space

Building good kD-trees

- Need the probabilities
- Turns out to be proportional to surface area (SA)
- Not the volume
- Need the child cell costs
- Simple triangle count works great (very rough approx.)
- Many attempts to improve this did not work out

$$
\begin{aligned}
\operatorname{Cost}(\mathrm{c}) & =\mathrm{C} _ \text {trav }+\operatorname{Prob}(\text { hit } \mathrm{L}) * \operatorname{Cost}(\mathrm{~L})+\operatorname{Prob}(\text { hit } \mathrm{R}) * \operatorname{Cost}(\mathrm{R}) \\
& =\mathrm{C} _ \text {trav }+\mathrm{SA}(\mathrm{~L}) / \mathrm{SA}(\mathrm{c}) * \operatorname{TriCount}(\mathrm{~L})+\mathrm{SA}(\mathrm{R}) / \mathrm{SA}(\mathrm{c}) * \operatorname{TriCount}(\mathrm{R})
\end{aligned}
$$

Termination Criteria

- When should we stop splitting?
- Another clever idea: When splitting does not help any more.
- Use the cost estimates in your termination criteria
- Threshold of cost improvement
- But stretch decision over multiple levels, to avoid local minima
- Threshold of cell size
- Absolute (!) probability so small there is no point in going on

Building good kD-trees

- Basic build algorithm
- Pick an axis, or optimize across all three
- Build a set of candidate split locations
- Based on BBox of triangles (in/out events) or
- Predefined locations (fixed number of bins across bbox axis)
- Sort the triangle events or bin them
- Walk through candidates to find minimum cost split
- Characteristics of the tree you're looking for
- Deep and thin
- Typical depth of 50-100,
- About 2 triangles per leaf,
- Big empty cells

Building kD-trees quickly

- Very important to build good trees first
- Otherwise you have no basis for comparison
- Don't give up cost optimization!
- Use the math, Luke...
- Luckily, lots of flexibility...
- Axis picking ("hack" pick vs. full optimization)
- Candidate picking (bboxes, exact; binning, sorting)
- Termination criteria ("knob" controlling tradeoff)

Building kD-trees quickly

- Remember, profile first! Where's the time going?
- Split personality
- Memory traffic all at the top (NO cache misses at bottom)
- Sifting through bajillion triangles to pick one split (!)
- Hierarchical building?
- Computation mostly at the bottom
- Lots of leaves, need more exact candidate info
- Lazy building?
- Change criteria during the build?

Fast Ray Tracing w/ kD-Trees

- Adaptive
- Build a cost-optimized kD-tree w/ the surface area heuristic
- Compact
- Cheap traversal

What's in a node?

- A kD-tree internal node needs:
- Am I a leaf?
- Split axis
- Split location
- Pointers to children

Compact (8-byte) Nodes

- kD-Tree node can be packed into 8 bytes
- Split location
- 32 bit float
- Always two children, put them side-by-side
- Only one 32-bit pointer
- Leaf flag + Split axis
- 2 bits

Compact (8-byte) Nodes

- kD-Tree node can be packed into 8 bytes
- Split location
- 32 bit float
- Always two children, put them side-by-side
- Only one 32-bit pointer
- Leaf flag + Split axis
- 2 bits
- So close! Sweep those 2 bits under the rug...
- Encode bits in lowest 2 bits of pointer
- Bits are not used as structure is multiple of 8, anyway

No Bounding Box!

- kD-Tree node corresponds to an AABB
- Does not mean it has to *contain* one
- Would be 24 bytes: 4X explosion (!)

Memory Layout

- Cache lines are much bigger than 8 bytes!
- Advantage of compactness lost with poor layout
- Pretty easy to do something reasonable
- Building depth first, watching memory allocator

Other Data

- Memory should be separated by rate of access
- Frames
- << Pixels
- <<Samples [Ray Trees]
$-\ll$ Rays [Shading (not quite)]
- << Triangle intersections
- << Tree traversal steps
- Example: pre-processed triangle, shading info...

Fast Ray Tracing w/ kD-Trees

- Adaptive
- Build a cost-optimized kD-tree w/ the surface area heuristic
- Compact
- Use an 8-byte node
- Lay out your memory in a cache-friendly way
- Cheap traversal

kD-Tree Traversal Operation

- Maintain on a stack
- Entry and exit distance to node (t_near and t_far)
- Three cases
- t_split > t_far:

Go only to near node

- t_near < t_split < t_far Go to both (use stack)
- t_split < t_near Go only to far node
- Near and far depend on direction of ray!

kD-Tree Traversal: Inner Loop

```
Given (node, t_near, t_far)
while (!node.isLeaf() )
{
    t_at_split = ( split_location - ray->origin[split_axis] ) * ray->inv_dir[split_axis]
    if (t_split <= t_min)
        continue with (far child, t_split, t_far) // hit either far child or none
    if (t_split >= t_max)
    continue with (near child, t_min, t_split) // hit near child only
    // hit both children
    push (far child, t_split, t_max) onto stack
    continue with (near child, t_min, t_split)
}
```


Optimize Your Inner Loop

- kD-Tree traversal is the most critical kernel
- It happens about a zillion times
- It's tiny
- Sloppy coding will show up
- Optimize, Optimize, Optimize
- Remove recursion and minimize stack operations
- Other standard tuning \& tweaking

Can it go faster?

- How do you make fast code go faster?
- Parallelize it!
- Not covered here

Directional Partitioning

- Applications
- Useful only for rays that start from a single point
- Camera
- Point light sources
- Preprocessing of visibility
- Requires scan conversion of geometry
- For each object locate where it is visible
- Expensive and linear in \# of objects
- Generally not used for primary rays

- Variation: Light buffer (for shadow rays)
- Lazy and conservative evaluation
- Store last found occluder in directional structure
- Test entry first for next shadow test

Ray Classification

- Partitioning of space and direction [Arvo \& Kirk'87]
- Roughly pre-computes visibility for the entire scene
- What is visible from each point in each direction?
- Very costly preprocessing, cheap traversal
- Improper trade-off between preprocessing and run-time
- Memory hungry, even with lazy evaluation
- Seldom used in practice

Packet Tracing

- Approach
- Combine many similar rays (e.g. primary or shadow rays)
- Trace them together in SIMD fashion
- All rays perform the same traversal operations
- All rays intersect the same geometry
- Can use SIMD instructions in modern processors
- Exposes coherence between rays
- All rays touch similar spatial indices
- Loaded data can be reused (in registers \& cache)
- More computation per recursion step \rightarrow better optimization
- Overhead
- Rays will perform unnecessary operations
- Overhead low for coherent and small set of rays (e.g. up to 4×4 rays)
- Needs an API that provides coherent sets of rays

Beam Tracing

Beam and Cone Tracing

- General idea:
- Trace continuous bundles of rays
- Cone Tracing:
- Approximate collection of ray with cone(s)
- Subdivide into smaller cones if necessary
- Beam Tracing:
- Exactly represent a ray bundle with pyramid
- Create new beams at intersections (polygons)
- Problems:
- Clipping of beams?
- Good approximations?
- How to compute intersections?
- Not really practical !!

Frustum Tracing

- Bound set of rays with frustum (NOT frustrum!!)
- Only during traversal
- API needs to provide coherent groups of rays
- Possibly hierarchically
- Traverse spatial index with frustum
- Small overhead (largely avoided by SIMD)

- Compute with 4 corner rays
- Avoid traversing many rays individually
- Particularly beneficial in the upper levels of index
- Switch to (packets of) rays when needed (intersection)
- Might be able to only use subset (e.g. based on extend of triangle)
- Split frustum hierarchically and traverse separately in lower levels
- Avoids overhead of carrying to many rays into small nodes
- E.g. fast primary ray traversal by W. Hunt (Oculus)

Distribution Ray Tracing

- Formerly called Distributed Ray Tracing [Cook 84]
- Stochastic Sampling of
- Pixel: Antialiasing
- Lens: Depth-of-field
- BRDF: Glossy reflections
- Lights: Smooth shadows from area light sources
- Time: Motion blur
- Covered in detail in RIS course

