
Stefan Lemme

Computer Graphics

- Advanced Rasterization -

Recap: occlusion query
 Occlusion queries: simplified Ray-Tracing operations

 Normal ray-scene intersection:
find first intersection with scene

 Occlusion-query:
find any intersection with scene (slightly faster)

 Rasterization context: ray-scene intersection operation is
not available

Shadow Techniques
• Projective Shadows (on plane)

– Project all vertices onto (offset) receiver plane

– Draw black triangles with (e.g. 50%) transparency

– Must avoid multiple overdraw (“double blending”)

• Draw receiver with unique stencil value

• Draw shadows only stencil is set

• Unset stencil while drawing shadows

• Shadow Volumes
1. Draw scene without lighting

2. Set stencil to 0 (1 if camera is inside volume)

3. Turn off writing to depth and color buffers

4. Draw volume, culling back faces,

incrementing stencil buffer

5. Draw volume, culling front faces, decrementing stencil buffer

6. Draw scene with direct lighting, but only where stencil == 0

7. Repeat from 2 for every light source

Shadow Volumes

4

Shadow Maps
• Problem of Shadow Volumes

– Can have huge overdraw for complex objects – expensive

• Especially when polygons span the view frustum

• Idea:
– Render the scene from the viewpoint of the light, storing depth

– At each pixel, transform the visible point into view from the light

• Computing pixel and depth in that view (simple matrix transform)

• Compare depth to the depth value, stored in the light map

• If map depth is smaller, than the point is in shadow – skip

– Otherwise do normal shading and add color to frame buffer

– Repeat for every light source

Shadow Mapping

Light

Source

Shadow Map

Camera

ba

Shadow Maps: Principal Problems

• Sampling
– Shadow maps are discretely and regularly sampled (e.g. grid)

– Surfaces can have arbitrary orientation with respect to light

• Can result in very bad sampling of a surface

– Essentially impossible to solve

• Would need adaptive sampling

• But the shadow map has to be generated in advance, no feedback

• Solved in ray tracing, as we generate the sample adaptively

• Resolution
– Objects far from the camera should not be sampled finely

• But shadow maps use a fixed grid

– Must adapt to preferred resolution

• Use several resolutions

– E.g. Split or Cascaded Shadow Maps

• Transform geometry appropriately

– E.g. Perspective or Trapezoid Shadow Maps

Shadow Maps: Principal Problems

• Interpolation/Filtering
– Shadow maps contain point samples

• We know nothing about what happens in between

• Regular leads to self-occlusion (in red)

– Essentially impossible to solve without area information

• E.g. min/max on depth

– Approaches (selected)

• Polygon offset

– Simply shift the depth values by some value

– Do so proportional to cos of angle

• Percentage Closer Filtering:

– In SW: Randomly sample pixel footprint and compute ratio

– In HW: bi-linearly interpolate depth difference from neighboring pixels

• Variance Shadow Maps:

– Store higher order information for better interpolation

Shadow Map Filtering
 Percentage-Closer Filtering

 Map area representing pixel to texture space

 Stochastically sample pixel to find percentage of surface in light

9

Pixel

(in texture space)

Shadow Map

Percentage-Closer Filtering

10

Some Shadow Map Algorithms :-)
• Simple

– SSM "Simple"

• Splitting
– PSSM "Parallel Split" http://http.developer.nvidia.com/GPUGems3/gpugems3_ch10.html

– CSM "Cascaded" http://developer.download.nvidia.com/SDK/10.5/opengl/src/cascaded_shadow_maps/doc/cascaded_shadow_maps.pdf

• Warping
– LiSPSM "Light Space Perspective" http://www.cg.tuwien.ac.at/~scherzer/files/papers/LispSM_survey.pdf

– TSM "Trapezoid" http://www.comp.nus.edu.sg/~tants/tsm.html

– PSM "Perspective" http://www-sop.inria.fr/reves/Marc.Stamminger/psm/

• Smoothing
– PCF "Percentage Closer Filtering" http://http.developer.nvidia.com/GPUGems/gpugems_ch11.html

• Filtering
– ESM "Exponential" http://www.thomasannen.com/pub/gi2008esm.pdf

– CSM "Convolution" http://research.edm.uhasselt.be/~tmertens/slides/csm.ppt

– VSM "Variance" http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.104.2569&rep=rep1&type=pdf

– SAVSM "Summed Area Variance" http://http.developer.nvidia.com/GPUGems3/gpugems3_ch08.html

• Soft Shadows
– PCSS "Percentage Closer" http://developer.download.nvidia.com/shaderlibrary/docs/shadow_PCSS.pdf

• Assorted
– ASM "Adaptive" http://www.cs.cornell.edu/~kb/publications/ASM.pdf

– AVSM "Adaptive Volumetric" http://visual-computing.intel-research.net/art/publications/avsm/

– CSSM "Camera Space" http://free-zg.t-com.hr/cssm/

– DASM "Deep Adaptive"

– DPSM "Dual Paraboloid" http://sites.google.com/site/osmanbrian2/dpsm.pdf

– DSM "Deep" http://graphics.pixar.com/library/DeepShadows/paper.pdf

– FSM "Forward" http://www.cs.unc.edu/~zhangh/technotes/shadow/shadow.ps

– LPSM "Logarithmic" http://gamma.cs.unc.edu/LOGSM/

– MDSM "Multiple Depth" http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.59.3376&rep=rep1&type=pdf

– RMSM "Resolution Matched" http://www.idav.ucdavis.edu/func/return_pdf?pub_id=919

– SDSM "Sample Distribution" http://visual-computing.intel-research.net/art/publications/sdsm/

– SPPSM "Separating Plane Perspective" http://jgt.akpeters.com/papers/Mikkelsen07/sep_math.pdf

– SSSM "Shadow Silhouette" http://graphics.stanford.edu/papers/silmap/silmap.pdf

http://http.developer.nvidia.com/GPUGems3/gpugems3_ch10.html
http://developer.download.nvidia.com/SDK/10.5/opengl/src/cascaded_shadow_maps/doc/cascaded_shadow_maps.pdf
http://www.cg.tuwien.ac.at/~scherzer/files/papers/LispSM_survey.pdf
http://www.comp.nus.edu.sg/~tants/tsm.html
http://www-sop.inria.fr/reves/Marc.Stamminger/psm/
http://http.developer.nvidia.com/GPUGems/gpugems_ch11.html
http://www.thomasannen.com/pub/gi2008esm.pdf
http://research.edm.uhasselt.be/~tmertens/slides/csm.ppt
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.104.2569&rep=rep1&type=pdf
http://http.developer.nvidia.com/GPUGems3/gpugems3_ch08.html
http://developer.download.nvidia.com/shaderlibrary/docs/shadow_PCSS.pdf
http://www.cs.cornell.edu/~kb/publications/ASM.pdf
http://visual-computing.intel-research.net/art/publications/avsm/
http://free-zg.t-com.hr/cssm/
http://sites.google.com/site/osmanbrian2/dpsm.pdf
http://graphics.pixar.com/library/DeepShadows/paper.pdf
http://www.cs.unc.edu/~zhangh/technotes/shadow/shadow.ps
http://gamma.cs.unc.edu/LOGSM/
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.59.3376&rep=rep1&type=pdf
http://www.idav.ucdavis.edu/func/return_pdf?pub_id=919
http://visual-computing.intel-research.net/art/publications/sdsm/
http://jgt.akpeters.com/papers/Mikkelsen07/sep_math.pdf
http://graphics.stanford.edu/papers/silmap/silmap.pdf

Ambient Occlusion
 Calculates shadows against assumed constant

ambient illumination
 Idea: in most environments, multiple light bounces lead to a very

smooth component in the overall illumination

 For this component, incident light on a point is proportional to the
part of the environment (opening angle) visible from the point

 Describes well contact shadows, dark corners

N

r assume constant light

outside radius r

α

Ambient Occlusion (Visibility)

Nvidia

AO Using Ray-Tracing
 Computation using Ray-Tracing straight forward

 Start at point P

 Sample N directions (D1-DN) from upper hemisphere

 Shot shadow rays from P to Di with maximum length r

 Count how many rays reach the environment

 Gives correct result in the limit, but requires many rays to avoid
noise (i.e. very slow)

N

r assume constant light

outside radius r

AO Using Ray-Tracing

Screen Space Ambient Occlusion

 Can we approximate ambient occlusion in real-time?

 Ray-scene intersection too slow

 Idea: use z-buffer as scene approximation
 Horizontal and vertical position give position of point in

x,y-direction (camera space)

 Z-buffer content gives position of point in z-direction (camera
space)

 Contains discrete representation of all visible geometry

 Use ray-tracing against this simplified scene

Screen Space Ambient Occlusion

camera

z-buffer

corner

fake

corner ?

geometry

outside

viewport ?

Screen Space AO
• Tracing many rays is still expensive

– Often 200 and more samples are needed for good results

• Approach
– For each pixel (Crytek approach, many others available)

• Test a number of random points in sphere visible 3D point

– Do not know surface orientation, so must test in all directions

• If more than 50% pass we have full visibility

– Otherwise scale AO with number of samples

• Can still be quite costly

– Acceleration
• Use different pseudo-random pattern for each pixel in NxN block

– Gives slightly different values for each pixel

• Filter over a NxN neighborhood

– Uses all samples: E.g. 4x4 block with 16 samples each: 256 samples total

• Make sure not to filter over wrong pixels (background)

– Take distance, normal, etc. into account (bilateral filter)

Screen Space AO

Crytek

Screen Space AO

Crytek

• Screen-space shading
technique

• Avoid over-shading of
fragments due to later
occlusion

• First pass gathers data
relevant to shading into
G-Buffer
– Color (albedo)
– Normal
– Depth

• Second pass performs
actual shading per pixel
(i.e. only for visible
fragments)

Deferred Shading

https://de.wikipedia.org/wiki/Datei:Deferred_Shading_FBOs.jpg

Volume Rendering
• Texture-based volume rendering using view-aligned

slicing of volume data

• Proxy-Geometry for rasterization

• Draw in back-to-front sorted order with alpha
blending enabled

Nvidia

Isosurfaces from Volume Data

Isosurfaces from Volume Data
• originated by William E. Lorensen and Harvey E. Cline

in 1987

• caseBit[i] = density(vi) > 0

v0

v1 v2

v6v5

v7

v3

v4

case = v7|v6|v5|v4|v3|v2|v1|v0

= 11000001

= 0xC1 = 193

Isosurfaces from Volume Data
• 15 fundamental cases for Marching Cubes

Isosurfaces from Noise

Procedural Terrain Generation

Procedural Terrain Generation

Decorating large-scale Terrain

Decorating large-scale Terrain
• goal: cover large terrain surfaces with grass in real-time

• thousands of millions of grass blades

• multiple instances of a single grass patch – three different
representations

• arranged into the cells of a uniform grid

Level of Detail

Decorating large-scale Terrain

Rendering Text and Decals

Valve

• Font Rendering

• Glyph consists of
splines as outline

Rendering Text and Decals

Rendering Text and Decals
• Bitmap Fonts

Rendering Text and Decals

64x64 texture,

alpha-blended

64x64 texture,

alpha tested

• Magnification using semi-transparent textures

Valve

High resolution input 64x64 Distance field

Rendering Text and Decals
• Magnification using distance fields

Valve

Rendering Text and Decals

64x64 texture,

alpha-blended

64x64 texture,

alpha tested

64x64 texture,

distance field

• Magnification using distance fields

Valve

Seminar “Real-Time Rendering”
• Summer Term 2019

– Focus on rasterization and inner workings of graphics APIs

– Implement a rendering technique using a software rasterizer

• Modus operandi
– Each student works solely on his own topic

– Individual supervision by a CG member

– Mid-term short presentation

– End-term presentation incl. implementation and live demo

– Documentation of work in the fashion of a short paper

Seminar “Real-Time Rendering”
• Non-exhaustive list of topics may include …

– Procedural Content
(fractals, wavelets, procedural materials, procedural geometry …)

– Deferred Rendering
(G-Buffers, deferred shading, deferred lighting, HDR, …)

– Culling
(view-frustum culling, occlusion culling, hierarchical depth culling,
portals and visibility pre-computation, …)

– Processing Geometry
(splines, surface subdivision, simplification, geometry and
tesselation shaders, …)

– Compressed Images
(textures, framebuffers, fast decompression, GPU-friendly
storage, color and normal encoding, …)

– …

• More Info on the website soon:
https://graphics.cg.uni-saarland.de/courses/

