Computer Graphics

- Clipping -

Philipp Slusallek
Clipping

Motivation
- Projected primitive might fall (partially) outside of display area
 - E.g. if standing inside a building
- Eliminate non-visible geometry early in the pipeline to process visible parts only
- Happens after transformation from 3D to 2D
- Must cut off parts outside the window
 - Cannot draw outside of window (e.g. plotter)
 - Outside geometry might not be representable (e.g. in fixed point)
- Must maintain information properly
 - Drawing the clipped geometry should give the correct results: e.g. correct interpolation of colors at triangle vertices when one is clipped
 - Type of geometry might change
 - Cutting off a vertex of a triangle produces a quadrilateral
 - Might need to be split into triangle again
 - Polygons must remain closed after clipping
Line Clipping

• **Definition of clipping**
 – Cut off parts of objects which lie outside/inside of a defined region
 – Often clip against viewport (2D) or canonical view-volume (3D)

• **Let’s focus first on lines only**
Brute-Force Method

- **Brute-force line clipping at the viewport**
 - If both end points p_b and p_e are inside viewport
 - Accept the whole line
 - Otherwise, clip the line at each edge
 - $p_{\text{intersection}} = p_b + t_{\text{line}}(p_e - p_b) = e_b + t_{\text{edge}}(e_e - e_b)$
 - Solve for t_{line} and t_{edge}
 - Intersection within segment if both $0 \leq t_{\text{line}}, t_{\text{edge}} \leq 1$
 - Replace suitable end points for the line by the intersection point
 - Unnecessarily test many cases that are irrelevant
Cohen-Sutherland (1974)

• **Advantage: divide and conquer**
 - Efficient trivial accept and trivial reject
 - Non-trivial case: divide and test

• **Outcodes of points**
 - Bit encoding *(outcode, OC)*
 - Each viewport edge defines a half space
 - Set bit if vertex is outside w.r.t. that edge

• **Trivial cases**
 - Trivial accept: both are in viewport
 - \((OC(p_b) \ OR \ OC(p_e)) = 0\)
 - Trivial reject: both lie outside w.r.t. *at least one common edge*
 - \((OC(p_b) \ AND \ OC(p_e)) \neq 0\)
 - Line has to be clipped to all edges where XOR bits are set, i.e. the points lies on different sides of that edge
 - \(OC(p_b) \ XOR \ OC(p_e)\)
Cohen-Sutherland

- **Clipping of line \((p1, p2)\)**

 \[
 \text{ocl} = \text{OC}(p1); \quad \text{oc2} = \text{OC}(p2); \quad \text{edge} = 0;
 \]

 \[
 \text{do } \{
 \text{if } ((\text{ocl} \text{ AND } \text{oc2}) \neq 0) \quad \text{// trivial reject of remaining segment}
 \quad \text{return REJECT;}
 \text{else if } ((\text{ocl} \text{ OR } \text{oc2}) == 0) \quad \text{// trivial accept of remaining segment}
 \quad \text{return } (\text{ACCEPT, } p1, p2);
 \text{if } ((\text{ocl} \text{ XOR } \text{oc2})[\text{edge}]) \{
 \text{if } (\text{ocl}[\text{edge}]) \quad \text{// p1 outside}
 \quad \{ p1 = \text{cut}(p1, p2, \text{edge}); \quad \text{ocl} = \text{OC}(p1); \}
 \text{else} \quad \text{// p2 outside}
 \quad \{ p2 = \text{cut}(p1, p2, \text{edge}); \quad \text{oc2} = \text{OC}(p2); \}
 \}
 \}
 \text{while } (++\text{edge} < 4); \quad \text{// Not the most efficient solution}
 \text{return } ((\text{ocl} \text{ OR } \text{oc2}) == 0) \quad ? \quad (\text{ACCEPT, } p1, p2) : \text{REJECT;}
 \]

- **Intersection calculation for** \(x = x_{\text{min}}\)

 \[
 \frac{y - y_a}{y_e - y_a} = \frac{x_{\text{min}} - x_a}{x_e - x_a}
 \]

 \[
 y = y_a + (x_{\text{min}} - x_a) \frac{y_e - y_a}{x_e - x_a}
 \]
Cyrus-Beck (1978)

- **Parametric line-clipping algorithm**
 - Only convex polygons: max 2 intersection points
 - Use edge orientation

- **Idea: clipping against polygons**
 - Clip line $p = p_b + t_i(p_e - p_b)$ with each edge
 - Intersection points sorted by parameter t_i
 - Select
 - t_{in}: entry point ($(p_e - p_b) \cdot N_i < 0$) with largest t_i
 - t_{out}: exit point ($(p_e - p_b) \cdot N_i > 0$) with smallest t_i
 - If $t_{out} < t_{in}$, line lies completely outside (akin to ray-box intersect.)

- **Intersection calculation**

$$\left(p - p_{edge}\right) \cdot N_i = 0$$

$$t_i(p_e - p_b) \cdot N_i + \left(p_b - p_{edge}\right) \cdot N_i = 0$$

$$t_i = \frac{(p_{edge} - p_b) \cdot N_i}{(p_e - p_b) \cdot N_i}$$
Liang-Barsky (1984)

• **Cyrus-Beck for axis-aligned rectangles**
 - Using window-edge coordinates (with respect to an edge T)
 \[WEC_T(p) = (p - p_T) \cdot N_T \]

• **Example: top ($y = y_{\text{max}}$)**

 \[
 N_T = \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \quad p_b - p_T = \begin{pmatrix} x_b - x_{\text{max}} \\ y_b - y_{\text{max}} \end{pmatrix}
 \]

 \[
 t_T = \frac{(p_b - p_T) \cdot N_T}{(p_b - p_e) \cdot N_T} = \frac{WEC_T(p_b)}{WEC_T(p_b) - WEC_T(p_e)} = \frac{y_b - y_{\text{max}}}{y_b - y_e}
 \]

 - Window-edge coordinate (WEC): decision function for an edge
 - Directed distance to edge
 - Only sign matters, similar to Cohen-Sutherland opcode
 - Sign of the dot product determines whether the point is in or out
 - Normalization unimportant
Line Clipping - Summary

• Cohen-Sutherland, Cyrus-Beck, and Liang-Barsky algorithms readily extend to 3D

• Cohen-Sutherland algorithm
 + Efficient when majority of lines can be trivially accepted / rejected
 • Very large clip rectangles: almost all lines inside
 • Very small clip rectangles: almost all lines outside
 – Repeated clipping for remaining lines
 – Testing for 2D/3D point coordinates

• Cyrus-Beck (Liang-Barsky) algorithms
 + Efficient when many lines must be clipped
 + Testing for 1D parameter values
 – Testing intersections always for all clipping edges (in the Liang-Barsky trivial rejection testing possible)
Polygon Clipping

- Extended version of line clipping
 - Condition: polygons have to remain closed
 - Filling, hatching, shading, ...
Sutherland-Hodgeman (1974)

- Idea
 - Iterative clipping against each edge in sequence

- Four different local operations based on sides of \(p_{i-1} \) and \(p_i \)

\[
\begin{align*}
\text{inside} & \quad \text{outside} \\
\text{output: } p_i & \quad \text{output: } p \\
\text{output: } - & \quad \text{1st output: } p \\
\text{2nd output: } p_i & \quad \text{output: } p
\end{align*}
\]
Enhancements

• Recursive polygon clipping
 – Pipelined Sutherland-Hodgeman

\[p_0, p_1, ... \rightarrow \text{Top} \rightarrow \text{Bottom} \rightarrow \text{Left} \rightarrow \text{Right} \rightarrow p_0, p_1, ... \]

• Problems
 – Degenerated polygons/edges
 • Elimination by post-processing, if necessary
Other Clipping Algorithms

• **Weiler & Atherton (´77)**
 – Arbitrary concave polygons with holes against each other

• **Vatti (´92)**
 – Also with self-overlap

• **Greiner & Hormann (TOG ´98)**
 – Simpler and faster as Vatti
 – Also supports Boolean operations
 – Idea:
 • Odd winding number rule
 – Intersection with the polygon leads to a winding number ± 1
 • Walk along both polygons
 • Alternate winding number value
 • Mark point of entry and point of exit
 • Combine results

Non-zero WN: in
Even WN: out
Greiner & Hormann

A in B

B in A

(A in B) ∪ (B in A)
3D Clipping agst. View Volume

• **Requirements**
 – Avoid unnecessary rasterization
 – Avoid overflow on transformation at fixed point!

• **Clipping against viewing frustum**
 – Enhanced Cohen-Sutherland with 6-bit outcode
 – After perspective division
 • $-1 < y < 1$
 • $-1 < x < 1$
 • $-1 < z < 0$
 – Clip against side planes of the canonical viewing frustum
 – Works analogously with Liang-Barsky or Sutherland-Hodgeman
3D Clipping agst. View Volume

- **Clipping in homogeneous coordinates**
 - Use canonical view frustum, but avoid costly division by \(W \)
 - Inside test with a linear distance function (WEC)
 - Left: \(\frac{X}{W} > -1 \) \(\Rightarrow \) \(W + X = WEC_L(p) > 0 \)
 - Top: \(\frac{Y}{W} < 1 \) \(\Rightarrow \) \(W - Y = WEC_T(p) > 0 \)
 - Back: \(\frac{Z}{W} > -1 \) \(\Rightarrow \) \(W + Z = WEC_B(p) > 0 \)
 - ...
 - Intersection point calculation (before homogenizing)
 - Test: \(WEC_L(p_b) > 0 \) and \(WEC_L(p_e) < 0 \)
 - Calculation:

\[
WEC(p_b + t(p_e - p_b)) = 0
\]
\[
W_b + t(W_e - W_b) + X_b + t(X_e - X_b) = 0
\]
\[
t = \frac{W_b + X_b}{(W_b + X_b) - (W_e + X_e)} = \frac{WEC_L(p_b)}{WEC_L(p_b) - WEC_L(p_e)}
\]

- **Negative w**
 - Points with \(w < 0 \) or lines with \(w_b < 0 \) and \(w_e < 0 \)
 - Negate and continue
 - Lines with \(w_b \cdot w_e < 0 \) (NURBS)
 - Line moves through infinity
 - External "line"
 - Clipping two times
 - Original line
 - Negated line
 - Generates up to two segments
Practical Implementations

• **Combining clipping and scissoring**
 – Clipping is expensive and should be avoided
 • Intersection calculation
 • Variable number of new points, new triangles
 – Enlargement of clipping region
 • (Much) larger than viewport, but
 • Still avoiding overflow due to fixed-point representation
 – Result
 • Less clipping
 • Applications should avoid drawing objects that are outside of the viewport/viewing frustum
 • Objects that are partially outside will be implicitly clipped during rasterization
 • Slight penalty because they will still be processed (triangle setup)