Computer Graphics

Camera & Projective Transformations

Philipp Slusallek

Motivation

* Rasterization works on 2D primitives (+ depth)
 Need to project 3D world onto 2D screen

« Based on
— Positioning of objects in 3D space
— Positioning of the virtual camera

Coordinate Systems

Local (object) coordinate system (3D)
— Object vertex positions
— Can be hierarchically nested in each other (scene graph, transf. stack)

« World (global) coordinate system (3D)
— Scene composition and object placement
* Rigid objects: constant translation, rotation per object, (scaling)
« Animated objects: time-varying transformation in world-space
— lllumination can be computed in this space

« Cameral/view/eye coordinate system (3D)
— Coordinates relative to camera pose (position & orientation)
« Camera itself specified relative to world space
— lllumination can also be done in this space

 Normalized device coordinate system (2.5D)
— After perspective transformation, rectilinear, in [0, 1]3
— Normalization to view frustum (for rasterization and depth buffer)
— Shading executed here (interpolation of color across triangle)

« Window/screen (raster) coordinate system (2D)
— 2D transformation to place image in window on the screen

Hierarchical Coordinate Systems

 Used in Scene Graphs
— Group objects hierarchically
— Local coordinate system is relative to parent coordinate system

— Apply transformation to the parent to change the whole sub-tree
(or sub-graph)

Hierarchical Coordinate Systems

« Hierarchy of transformations

T root
T ShoulderR
T _ShoulderRJoint
T _UpperArmR
T _ElbowRJoint
T LowerArmR
T _WristRJoint
T _ShoulderL
T _ShoulderLJoint
T _UpperArmL
T _ElbowLJoint
T LowerArmL

Positions the character in the world
Moves to the right shoulder

Rotates in the shoulder <== User
Moves to the Elbow

Rotates in the Elbow <== User
Moves to the wrist

Rotates in the wrist <== User

Further for the right hand and the fingers
Moves to the left shoulder

Rotates in the shoulder <== User
Moves to the Elbow
Rotates in the Elbow <== User

Moves to the wrist

..... Further for the left hand and the fingers
— Each transformation is relative to its parent
» Concatenated my multiplying and pushing onto a stack
» Going back by poping from the stack
— This transformation stack was so common, it was build into OpenGL

Coordinate Transformations

 Model transformation
— ODbject space to world space
— Can be hierarchically nested
— Typically an affine transformation

* View transformation
— World space to eye space
— Typically an affine transformation

« Combination: Modelview transformation

— Used by traditional OpenGL (although world space is
conceptually intuitive, it isn’t explicitly exposed)

Coordinate Transformations

* Projective transformation
— Eye space to normalized device space (defined by view frustum)
— Parallel or perspective projection
— 3D to 2D: Preservation of depth in Z coordinate

* Viewport transformation
— Normalized device space to window (raster) coordinates

Camera & Perspective Transforms

e Goal

— Compute the transformation between points in 3D and
pixels on the screen

— Required for rasterization algorithms (OpenGL)
» They project all primitives from 3D to 2D
» Rasterization happens in 2D (actually 2.5D, XY plus Z attribute)

« Given
— Camera pose (pos & orient.)
« EXxtrinsic parameters
— Camera configuration
* Intrinsic parameters

— Pixel raster description
« Resolution and placement on screen lza
* Following: Stepwise Approach

— Express each transformation step in homogeneous coordinates
— Multiply all 4x4 matrices to combine all transformations

Viewing Transformation

 Need camera position and orientation in world space
— External (extrinsic) camera parameters
» Center of projection: projection reference point (PRP)
» Optical axis: view-plane normal (VPN)

* View up vector (VUP)
— Not necessarily orthogonal to VPN, but not co-linear

 Needed Transformations
1) Translation of PRP to the origin (-PRP)

2) Rotation such that viewing direction is along negative Z axis
2a) Rotate such that VUP is pointing up on screen

VUP

PRP
VPN

Perspective Transformation

 Define projection (perspective or orthographic)
— Needs internal (intrinsic) camera parameters
— Screen window (Center Window (CW), width, height)
* Window size/position on image plane (relative to VPN intersection)
* Window center relative to PRP determines viewing direction (= VPN)
— Focal length (f)
» Distance of projection plane from camera along VPN
« Smaller focal length means larger field of view
— Field of view (fov) (defines width of view frustum)
« Often used instead of screen window and focal length
— Only valid when screen window is centered around VPN (often the case)
« Vertical (or horizontal) angle plus aspect ratio (width/height)
— Or two angles (both angles may be half or full angles, beware!)
— Near and far clipping planes
« Given as distances from the PRP along VPN
» Near clipping plane avoids singularity at origin (division by zero)
» Far clipping plane restricts the depth for fixed-point representation

Simple Camera Parameters

« Camera definition (typically used in ray tracers)
— o0 € R3 : center of projection, point of view (PRP)
— CW € R3 : vector to center of window
* “Focal length”: projection of vector to CW onto VPN
— focal = [(CW —o0) - VPN|
— x,y € R3: span of half viewing window
* VPN = (y x x)/|(y x x)|

* VUP=—y
* width = 2|x]|
* height = 2|y|

« Aspect ratio: camera,.4:;, = |x|/|V|

PRP: Projection reference point
VPN: View plane normal

VUP: View up vector

CW: Center of window

11

Viewport Transformation

 Normalized Device Coordinates (NDC)
— Intrinsic camera parameters transform to NDC
« [0,1]? for X, y across the screen window
» [0,1] for z (depth)
« Mapping NDC to raster coordinates on the screen
— xres, yres . Size of window in pixels
« Should have same aspect ratios to avoid distortion

xres pixelspacin
— camerQygiip = pre PR Ix

yres pixelspacing,,’
« Horizontal and vertical pixel spacing (distance between centers)
— Today, typically the same but can be different e.g. for some video formats
— Position of window on the screen
« Offset of window from origin of screen
— posx and posy given in pixels
» Depends on where the origin is on the screen (top left, bottom left)
— “Scissor box” or “crop window” (region of interest)
* No change in mapping but limits which pixels are rendered

Camera Parameters: Rend.Man

« RenderMan camera specification
— Almost identical to above description

 Distance of Screen Window from origin given by “field of view” (fov)
— fov: Full angle of segment (-1,0) to (1,0), when seen from origin

« CW given implicitly

* No offset on screen

13

Pinhole Camera Model

g
=£:)x=ﬁ
g

Infinitesimally small pinhole
= Theoretical (non-physical) model
= Sharp image everywhere

= Infinite depth of field

= Infinitely dark image in reality

= Diffraction effects in reality

14

Thin Lens Model

Lens focuses light from given position on object through finite-size aperture onto

some location of the film plane, i.e. create sharp image./\ 5
N, :
.. | [
.. f T —
J 1
Lens formula defines reciprocal focal length 7 =—4—
(focus distance from lens of parallel light) g
Object center at distance g is in focus at ~ p = f_%
g—
Object front at distance g-r is in focus at b' = (f(g _) T)f
g—r)-—

15

...... CAS
b d b =
Circle of confusion Ae = |a (1 — F)‘ < : ‘_“_‘:‘__ﬁiiggi > e
(CoC) U b ‘_:___:_,.‘.;;;::::::::: -

Sharpness criterion based As > Ae
on pixel size and CoC

DOF: Defined radius r, such that CoC smaller than As

Depth of field (DOE gAs(g — f) 1
P () r<af+AS(g—f)$roca

The smaller the aperture, the larger the depth of field

16

Viewing Transformation

Let’s put this all together

Goal:Camera: at origin, view along —Z, Y upwards
— Assume right handed coordinate system
— Translation of PRP to the origin
— Rotation of VPN to Z-axis
— Rotation of projection of VUP to Y-axis

Rotations
— Build orthonormal basis for the camera and form inverse
« Z’=VPN, X'= normalize(VUP x VPN), Y'=Z x X

Viewing transformation
— Translation followed by rotation

X, v, z, o7 . -Z" =-VPN

vorro| Xy Yy Zy 0
X, Y, Z, 0
0 0 0 1

T(—PRP)

Sheared Perspective Transformation

Step 1: VPN may not go through center of window
— Oblique viewing configuration

e Shear

Shear space such that window center is along Z-axis
— Window center CW (in 3D view coordinates)

CW = ((right+left)/2, (top+bottom)/2, -focal)’

* Shear matrix

Image plane
CW,
/1 0 ——— 0\ f
CW, > >
_ CW, — left
H={o0 1 - 0
W, CW
0 0 1 0) X
v
0 0 0 1 | right

View from top

18

Normalizing

« Step 2: Scaling to canonical viewing frustum

— Scale in X and Y such that screen window boundaries open at 45
degree angles (at focal plane)

— Scale in Z such that far clipping plane is at Z= -1

-
—> -Z —> -Z
-near — ——7
-focal -near -focal
: : f
+ Scaling matrix o far far N

— 0 0 o\ 2focal

/far width 0 00
O — O 0 2focal

- S = Sfaery = far) 0 height 0 O
0 O — 0 0 0 1 0
far
\ 0 0 0 1/ 0 0 0 1

Perspective Transformation

« Step 3: Perspective transformation

— From canonical perspective viewing frustum (= cone at origin
around -Z-axis) to regular box [-1 .. 1]>x [0 .. 1]

 Mapping of Xand Y
— Lines through the origin are mapped to lines parallel to the Z-axis
« X'=x/-z and y’ = y/-z (coordinate given by slope with respect to z!)
— Do not change X and Y additively (first two rows stay the same)
— Set W to —z so we divide when converting back to 3D

« Determines last row A 450 A (-1,1)
 Perspective transformation
1 0 0 O s S

_ P =

O 1 0 O
A B C DI Still unknown
O 0 -1 O

— NOte: PerSpECtive prOjeCtion = —
perspective transformation + parallel projection

Perspective Transformation

« Computation of the coefficients A, B, C, D
— No shear of Z with respectto X and Y
- A=B=0
— Mapping of two known points
« Computation of the two remaining parameters C and D
— n = near / far (due to previous scaling by 1/far)
» Following mapping must hold
- (0,0,—1,1)" = P(0,0,—1,1)T and (0,0,0,1)=P(0,0,—n,1)

* Resulting Projective transformation

1 0 O 0
0 1 0 0 A 45° A
— P = 0 0 1 n \
1-n 1-n
0O 0 -1 0 O > Q ®

— Transform Z non-linearly (in 3D)

* Z=— z(1-n) @

Parallel Projection to 2D

« Parallel projection to [-1 .. 1]?
— Formally scaling in Z with factor O
— Typically maintains Z in [0,1] for depth buffering
» As a vertex attribute (see OpenGL later)
« Transformation from [-1 .. 1]2to NDC ([0 .. 1]?
— Scaling (by 1/2 in X and Y) and translation (by (1/2,1/2))

* Projection matrix for combined transformation
— Delivers normalized device coordinates

10 0 1

2 2

1 1

* Poarallel = 0 3 0 2
0 0 Oorl O

0 O 0 1

Viewport Transformation

« Scaling and translation in 2D
— Scaling matrix to map to entire window on screen
* Spqster(XTES, YTES)
» No distortion if aspects ration have been handled correctly earlier

« Sometime need to reverse direction of y
— Some formats have origin at bottom left, some at top left
— Needs additional translation

— Positioning on the screen
* Translation T, (xpos, ypos)

« May be different depending on raster coordinate system
— Origin at upper left or lower left

23

Orthographic Projection

e Step 2a: Translation (orthographic)
— Bring near clipping plane into the origin

« Step 2b: Scaling to regular box [-1 .. 1]>x [0 .. -1]
« Mapping of Xand Y

- P, = Sxsznear =

/ 2 0 0 o\
width

, 1 0 O 0
0 ol 0 0 0O 1 O 0
ght
0 0 1 0 0O 0 1 near
\ far—mear / 0O 0 O 1
0 0 0 1

24

Camera Transformation

« Complete transformation (combination of matrices)
— Perspective Projection

¢ Tcamera — lraster Sraster Pparallel Ppersp Sfar Sxy HRT
— Orthographic Projection

* Tcamera = lraster Sraster Pparallel Sxyz TnearH RT

« Other representations
— Other literature uses different conventions
» Different camera parameters as input
 Different canonical viewing frustum

» Different normalized coordinates
— [-1.. 1]3 versus [0 ..1]3 versus ...

— Results in different transformation matrices — so be careful !!!

25

Per-Vertex Transformations

« Traditional OpenGL
pipeline
— Hierarchical modeling
» Modelview matrix stack
» Projection matrix stack
— Each stack can be

independently pushed/popped
— Matrices can be applied/multiplied

to top stack element

 Today

— Arbitrary matrices as
attributes to vertex
shaders that apply
them as they wish (later)

— All matrix stack
handling must now be
done by application

abject eve

vt e lizod _
normalized window
device

Modelview| |Projection | [Perspectivd_| Viewport
Matrix Matrix Division Transform
Vodelview| |Projection | other calculations here
+ material & color
VModelview + shade model (flat)
. + polygon rendering mode
: + polygon culling

Local
space

Modelling and
positioning

DR - SicGrRA5H -

World
Space

Specification
of lighting

View transform
specified by position,
orientation of
camera

- = -
of component = - - - and surface
‘.”_[T_’_ :r'L [Tansformation to world space specified ,Im.ihu['w
50 e a hap ot : E
r::h' " by placement of object if static or of object
CC - . . .
)€ animation SVstem il moving
Eye Screen
space Buack-face space

culling

OL

Screen transformation
specified by internal attributes
of camera

Spaces

) Processes

Clipping against
view frustrum

Rendering:
hidden surface
calculation
rasterization
shading

26

OpenGL

Traditional ModelView matrix
— Modeling transformations AND viewing transformation
— No explicit world coordinates

Traditional Perspective transformation
— Simple specification
» glFrustum(left, right, bottom, top, near, far)
+ glOrtho(left, right, bottom, top, near, far)

Modern OpenGL
— Transformation provided by app, applied by vertex shader
— Vertex or Geometry shader must output clip space vertices
» Clip space: Just before perspective divide (by w)

Viewport transformation
— glViewport(x, y, width, height)
— Now can even have multiple viewports
» glViewportindexed(idx, x, y, width, height)
— Controlling the depth range (after Perspective transformation)
» glDepthRangelndexed(idx, near, far)

