Computer Graphics

Camera & Projective Transformations

Philipp Slusallek
Motivation

- Rasterization works on 2D primitives (+ depth)
- Need to project 3D world onto 2D screen
- Based on
 - Positioning of objects in 3D space
 - Positioning of the virtual camera
Coordinate Systems

- **Local (object) coordinate system (3D)**
 - Object vertex positions
 - Can be hierarchically nested in each other (scene graph, transf. stack)

- **World (global) coordinate system (3D)**
 - Scene composition and object placement
 - Rigid objects: constant translation, rotation per object, (scaling)
 - Animated objects: time-varying transformation in world-space
 - Illumination can be computed in this space

- **Camera/view/eye coordinate system (3D)**
 - Coordinates relative to camera pose (position & orientation)
 - Camera itself specified relative to world space
 - Illumination can also be done in this space

- **Normalized device coordinate system (2.5D)**
 - After perspective transformation, rectilinear, in \([0, 1]^3\)
 - Normalization to view frustum (for rasterization and depth buffer)
 - Shading executed here (interpolation of color across triangle)

- **Window/screen (raster) coordinate system (2D)**
 - 2D transformation to place image in window on the screen
Hierarchical Coordinate Systems

- Used in Scene Graphs
 - Group objects hierarchically
 - Local coordinate system is relative to parent coordinate system
 - Apply transformation to the parent to change the whole sub-tree (or sub-graph)
Hierarchical Coordinate Systems

• Hierarchy of transformations

 \(T_{\text{root}} \) Positions the character in the world
 \(T_{\text{ShoulderR}} \) Moves to the right shoulder
 \(T_{\text{ShoulderRJoint}} \) Rotates in the shoulder \(\Leftarrow \text{User} \)
 \(T_{\text{UpperArmR}} \) Moves to the Elbow
 \(T_{\text{ElbowRJoint}} \) Rotates in the Elbow \(\Leftarrow \text{User} \)
 \(T_{\text{LowerArmR}} \) Moves to the wrist
 \(T_{\text{WristRJoint}} \) Rotates in the wrist \(\Leftarrow \text{User} \)

 \(T_{\text{ShoulderL}} \) Moves to the left shoulder
 \(T_{\text{ShoulderLJoint}} \) Rotates in the shoulder \(\Leftarrow \text{User} \)
 \(T_{\text{UpperArmL}} \) Moves to the Elbow
 \(T_{\text{ElbowLJoint}} \) Rotates in the Elbow \(\Leftarrow \text{User} \)
 \(T_{\text{LowerArmL}} \) Moves to the wrist

 Further for the left hand and the fingers

 – Each transformation is relative to its parent
 – Concatenated my multiplying and pushing onto a stack
 – Going back by poping from the stack

 – This transformation stack was so common, it was build into OpenGL
Coordinate Transformations

• Model transformation
 – Object space to world space
 – Can be hierarchically nested
 – Typically an affine transformation

• View transformation
 – World space to eye space
 – Typically an affine transformation

• Combination: Modelview transformation
 – Used by traditional OpenGL (although world space is conceptually intuitive, it isn’t explicitly exposed)
Coordinate Transformations

• **Projective transformation**
 – Eye space to normalized device space (defined by view frustum)
 – Parallel or perspective projection
 – 3D to 2D: Preservation of depth in Z coordinate

• **Viewport transformation**
 – Normalized device space to window (raster) coordinates
Goal
- Compute the transformation between points in 3D and pixels on the screen
- Required for rasterization algorithms (OpenGL)
 - They project all primitives from 3D to 2D
 - Rasterization happens in 2D (actually 2.5D, XY plus Z attribute)

Given
- Camera pose (pos & orient.)
 - *Extrinsic* parameters
- Camera configuration
 - *Intrinsic* parameters
- Pixel raster description
 - Resolution and placement on screen

Following: Stepwise Approach
- Express each transformation step in homogeneous coordinates
- Multiply all 4x4 matrices to combine all transformations
Viewing Transformation

• Need camera position and orientation in world space
 – External (extrinsic) camera parameters
 • Center of projection: projection reference point (PRP)
 • Optical axis: view-plane normal (VPN)
 • View up vector (VUP)
 – Not necessarily orthogonal to VPN, but not co-linear

• Needed Transformations
 1) Translation of PRP to the origin (-PRP)
 2) Rotation such that viewing direction is along negative Z axis
 2a) Rotate such that VUP is pointing up on screen
Perspective Transformation

- **Define projection (perspective or orthographic)**
 - Needs internal (intrinsic) camera parameters
 - Screen window (Center Window (CW), width, height)
 - Window size/position on image plane (relative to VPN intersection)
 - Window center relative to PRP determines viewing direction (\neq VPN)
 - Focal length (f)
 - Distance of projection plane from camera along VPN
 - Smaller focal length means larger field of view
 - Field of view (fov) (defines width of view frustum)
 - Often used instead of screen window and focal length
 - Only valid when screen window is centered around VPN (often the case)
 - Vertical (or horizontal) angle plus aspect ratio (width/height)
 - Or two angles (both angles may be half or full angles, beware!)
 - Near and far clipping planes
 - Given as distances from the PRP along VPN
 - Near clipping plane avoids singularity at origin (division by zero)
 - Far clipping plane restricts the depth for fixed-point representation
Simple Camera Parameters

- **Camera definition (typically used in ray tracers)**
 - \(o \in \mathbb{R}^3 \): center of projection, point of view (PRP)
 - \(CW \in \mathbb{R}^3 \): vector to center of window
 - “Focal length”: projection of vector to \(CW \) onto \(VPN \)
 - \(focal = |(CW - o) \cdot VPN| \)
 - \(x, y \in \mathbb{R}^3 \): span of half viewing window
 - \(VPN = (y \times x)/|(y \times x)| \)
 - \(VUP = -y \)
 - \(width = 2|x| \)
 - \(height = 2|y| \)
 - Aspect ratio: \(\text{camera ratio} = |x|/|y| \)

PRP: Projection reference point
VPN: View plane normal
VUP: View up vector
CW: Center of window
Viewport Transformation

- **Normalized Device Coordinates (NDC)**
 - Intrinsic camera parameters transform to NDC
 - $[0,1]^2$ for x, y across the screen window
 - $[0,1]$ for z (depth)

- **Mapping NDC to raster coordinates on the screen**
 - x_{res}, y_{res}: Size of window in pixels
 - Should have same aspect ratios to avoid distortion
 - $camera_{ratio} = \frac{x_{res} \text{ pixel spacing}_x}{y_{res} \text{ pixel spacing}_y}$
 - Horizontal and vertical pixel spacing (distance between centers)
 - Today, typically the same but can be different e.g. for some video formats
 - Position of window on the screen
 - Offset of window from origin of screen
 - $posx$ and $posy$ given in pixels
 - Depends on where the origin is on the screen (top left, bottom left)
 - “Scissor box” or “crop window” (region of interest)
 - No change in mapping but limits which pixels are rendered
Camera Parameters: Rend.Man

- **RenderMan camera specification**
 - Almost identical to above description
 - Distance of Screen Window from origin given by “field of view” (fov)
 - fov: Full angle of segment (-1,0) to (1,0), when seen from origin
 - CW given implicitly
 - No offset on screen
Pinhole Camera Model

\[
\frac{r}{g} = \frac{x}{f} \Rightarrow x = \frac{fr}{g}
\]

Infinitesimally small pinhole

⇒ Theoretical (non-physical) model
⇒ Sharp image everywhere
⇒ Infinite depth of field
⇒ Infinitely dark image in reality
⇒ Diffraction effects in reality
Thin Lens Model

Lens focuses light from given position on object through finite-size aperture onto some location of the film plane, i.e. create sharp image.

Lens formula defines reciprocal focal length (focus distance from lens of parallel light)

\[
\frac{1}{f} = \frac{1}{b} + \frac{1}{g}
\]

Object center at distance \(g\) is in focus at

\[
b = \frac{fg}{g - f}
\]

Object front at distance \(g-r\) is in focus at

\[
b' = \frac{f(g - r)}{(g - r) - f}
\]
Thin Lens Model: Depth of Field

Circle of confusion (CoC) \[\Delta e = \left| a \left(1 - \frac{b}{b'}\right)\right| \]

Sharpness criterion based on pixel size and CoC \[\Delta s > \Delta e \]

DOF: Defined radius \(r \), such that CoC smaller than \(\Delta s \)

Depth of field (DOF) \[r < \frac{g\Delta s(g - f)}{af + \Delta s(g - f)} \Rightarrow r \propto \frac{1}{a} \]

The smaller the aperture, the larger the depth of field
Viewing Transformation

• Let’s put this all together

• Goal: Camera: at origin, view along –Z, Y upwards
 – Assume right handed coordinate system
 – Translation of PRP to the origin
 – Rotation of VPN to Z-axis
 – Rotation of projection of VUP to Y-axis

• Rotations
 – Build orthonormal basis for the camera and form inverse
 • Z´ = VPN, X´ = normalize(VUP x VPN), Y´ = Z´ × X´

• Viewing transformation
 – Translation followed by rotation

\[
V = RT = \begin{pmatrix}
X'_x & Y'_x & Z'_x & 0 \\
X'_y & Y'_y & Z'_y & 0 \\
X'_z & Y'_z & Z'_z & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}^T T(-PRP)
\]
Sheared Perspective Transformation

• **Step 1:** VPN may not go through center of window
 – Oblique viewing configuration

• **Shear**
 – Shear space such that window center is along Z-axis
 – Window center CW (in 3D view coordinates)
 • \(CW = ((\text{right}+\text{left})/2, (\text{top}+\text{bottom})/2, -\text{focal})^T \)

• **Shear matrix**

\[
H = \begin{pmatrix}
1 & 0 & -\frac{CW_x}{CW_z} & 0 \\
0 & 1 & -\frac{CW_y}{CW_z} & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\end{pmatrix}
\]
Normalizing

• Step 2: Scaling to canonical viewing frustum
 – Scale in X and Y such that screen window boundaries open at 45 degree angles (at focal plane)
 – Scale in Z such that far clipping plane is at Z = -1

• Scaling matrix

\[S = S_{far}S_{xy} = \begin{pmatrix} \frac{1}{\text{far}} & 0 & 0 & 0 \\ 0 & \frac{1}{\text{far}} & 0 & 0 \\ 0 & 0 & \frac{1}{\text{far}} & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \frac{2\text{focal}}{\text{width}} & 0 & 0 & 0 \\ 0 & \frac{2\text{focal}}{\text{height}} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \]
Perspective Transformation

- **Step 3: Perspective transformation**
 - From canonical perspective viewing frustum (= cone at origin around -Z-axis) to regular box \([-1 \ldots 1]^2 \times [0 \ldots 1]\)

- **Mapping of X and Y**
 - Lines through the origin are mapped to lines parallel to the Z-axis
 - \(x' = x/-z\) and \(y' = y/-z\) (coordinate given by slope with respect to z!)
 - Do not change X and Y additively (first two rows stay the same)
 - Set W to \(-z\) so we divide when converting back to 3D
 - Determines last row

- **Perspective transformation**
 - \(P = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ A & B & C & D & \end{pmatrix}\) Still unknown
 - Note: Perspective projection = perspective transformation + parallel projection
Perspective Transformation

• Computation of the coefficients A, B, C, D
 – No shear of Z with respect to X and Y
 • $A = B = 0$
 – Mapping of two known points
 • Computation of the two remaining parameters C and D
 – $n = \text{near} / \text{far}$ (due to previous scaling by $1/far$)
 • Following mapping must hold
 – $(0,0,-1,1)^T = P(0,0,-1,1)^T$ and $(0,0,0,1)=P(0,0,-n,1)$

• Resulting Projective transformation

$$P = \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & \frac{1}{1-n} & \frac{n}{1-n} \\
0 & 0 & -1 & 0
\end{pmatrix}$$

– Transform Z non-linearly (in 3D)
 • $z' = -\frac{z+n}{z(1-n)}$
Parallel Projection to 2D

• Parallel projection to $[-1 .. 1]^2$
 - Formally scaling in Z with factor 0
 - Typically maintains Z in [0,1] for depth buffering
 • As a vertex attribute (see OpenGL later)

• Transformation from $[-1 .. 1]^2$ to NDC $([0 .. 1]^2)$
 - Scaling (by 1/2 in X and Y) and translation (by (1/2,1/2))

• Projection matrix for combined transformation
 - Delivers normalized device coordinates

$$P_{\text{parallel}} = \begin{pmatrix}
\frac{1}{2} & 0 & 0 & 1 \\
0 & \frac{1}{2} & 0 & \frac{1}{2} \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1
\end{pmatrix}$$
Viewport Transformation

- **Scaling and translation in 2D**
 - Scaling matrix to map to entire window on screen
 - \(S_{\text{raster}}(x_{\text{res}}, y_{\text{res}}) \)
 - No distortion if aspects ration have been handled correctly earlier
 - Sometime need to reverse direction of y
 - Some formats have origin at bottom left, some at top left
 - Needs additional translation
 - Positioning on the screen
 - Translation \(T_{\text{raster}}(x_{\text{pos}}, y_{\text{pos}}) \)
 - May be different depending on raster coordinate system
 - Origin at upper left or lower left
Orthographic Projection

• **Step 2a: Translation (orthographic)**
 – Bring near clipping plane into the origin
• **Step 2b: Scaling to regular box** [\([-1 .. 1]\)]^2 x [\([0 .. -1]\)]
• **Mapping of X and Y**

\[- P_o = S_{xyz}T_{near} = \begin{pmatrix} \frac{2}{\text{width}} & 0 & 0 & 0 \\ 0 & \frac{2}{\text{height}} & 0 & 0 \\ 0 & 0 & \frac{1}{\text{far-near}} & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & \text{near} \\ 0 & 0 & 0 & 1 \end{pmatrix} \]
Camera Transformation

• **Complete transformation (combination of matrices)**
 – Perspective Projection
 • $T_{camera} = T_{raster} S_{raster} P_{parallel} P_{persp} S_{far} S_{xy} H R T$
 – Orthographic Projection
 • $T_{camera} = T_{raster} S_{raster} P_{parallel} S_{xyz} T_{near} H R T$

• **Other representations**
 – Other literature uses different conventions
 • Different camera parameters as input
 • Different canonical viewing frustum
 • Different normalized coordinates
 – $[-1 .. 1]^3$ versus $[0 .. 1]^3$ versus ...
 – ...
 → *Results in different transformation matrices – so be careful !!!*
Per-Vertex Transformations

- **Traditional OpenGL pipeline**
 - Hierarchical modeling
 - Modelview matrix stack
 - Projection matrix stack
 - Each stack can be independently pushed/popped
 - Matrices can be applied-multiplied to top stack element

- **Today**
 - Arbitrary matrices as attributes to vertex shaders that apply them as they wish (later)
 - All matrix stack handling must now be done by application
OpenGL

• **Traditional ModelView matrix**
 – Modeling transformations AND viewing transformation
 – No explicit world coordinates

• **Traditional Perspective transformation**
 – Simple specification
 • `glFrustum(left, right, bottom, top, near, far)`
 • `glOrtho(left, right, bottom, top, near, far)`

• **Modern OpenGL**
 – Transformation provided by app, applied by vertex shader
 – Vertex or Geometry shader must output clip space vertices
 • Clip space: Just before perspective divide (by w)

• **Viewport transformation**
 – `glViewport(x, y, width, height)`
 – Now can even have multiple viewports
 • `glViewportIndexed(idx, x, y, width, height)`
 – Controlling the depth range (after Perspective transformation)
 • `glDepthRangeIndexed(idx, near, far)`