Computer Graphics

- Rasterization -

Philipp Slusallek
Rasterization

• **Definition**
 – Given some 2D geometry (point, line, circle, triangle, polygon,…), specify which pixels of a raster display each primitive *covers*
 • Often also called “scan-conversion”
 – Anti-aliasing: instead of only fully-covered pixels (single sample), specify what part of a pixel is *covered* (multi/super-sampling)

• **Perspectives**
 – OpenGL lecture: from an application programmer’s point of view
 – This lecture: from a graphics package implementer’s point of view
 – Looking at rasterization of (i) lines and (ii) polygons (areas)

• **Usages of rasterization in practice**
 – 2D-raster graphics, e.g. Postscript, PDF
 – 3D-raster graphics, e.g. SW rasterizers (Mesa, OpenSWR), HW
 – 3D volume modeling and rendering
 – Volume operations (CSG operations, collision detection)
 – Space subdivision (spatial indices): construction and traversal
Rasterization

- **Assumptions**
 - Pixels are sample **points** on a 2D integer grid
 - OpenGL: cell bottom-left, integer-coordinate
 - X11, Foley: at the cell center (we will use this)
 - Simple raster operations
 - Just setting pixel values or not (binary decision)
 - More complex operations later: compositing/anti-aliasing
 - Endpoints snapped to (sub-)pixel coordinates
 - Simple and consistent computations with fixed-point arithmetic
 - Limiting to lines with gradient/slope $|m| \leq 1$ (mostly horizontal)
 - Separate handling of horizontal and vertical lines
 - For mostly vertical, swap x and y ($|1/m| \leq 1$), rasterize, swap back
 - Special cases in SW, trivial in HW :-(
 - Line width is one pixel
 - $|m| \leq 1$: 1 pixel per column (X-driving axis)
 - $|m| > 1$: 1 pixel per row (Y-driving axis)
Lines: As Functions

• Specification
 – Initial and end points: \((x_o, y_o), (x_e, y_e), (dx, dy) = (x_e - x_o, y_e - y_o)\)
 – Functional form: \(y = mx + B\)
 – End points with integer coordinates \(\Rightarrow\) rational slope \(m = dy/dx\)

• Goal
 – Find those pixel per column whose distance to the line is smallest

• Brute-force algorithm
 – Assume that +X is the driving axis \(\rightarrow\) set pixel in every column
 for \(x_i = x_o\) to \(x_e\)
 \(y_i = m \times x_i + B\)
 setPixel\((x_i, \text{Round}(y_i))\) \hspace{1cm} // \text{Round}(y_i) = \text{Floor}(y_i + 0.5)

• Comments
 – Variables \(m\) and thus \(y_i\) need to be calculated in floating-point
 – Not well suited for direct HW implementation
 • A floating-point ALU is significantly larger in HW than integer
Lines: DDA

- **DDA: Digital Differential Analyzer**
 - Origin of incremental solvers for simple differential equations
 - The Euler method
 - Per time-step: \(x' = x + dx/dt \), \(y' = y + dy/dt \)

- **Incremental algorithm**
 - Choose \(dt=dx \), then per pixel
 - \(x_{i+1} = x_i + 1 \)
 - \(y_{i+1} = m \cdot x_{i+1} + B = m(x_i + 1) + B = (m \cdot x_i + B) + m = y_i + m \)
 - setPixel\((x_{i+1}, \text{Round}(y_{i+1}))\)

- **Remark**
 - Utilization of coherence through incremental calculation
 - Avoids the “costly” multiplication
 - Accumulates error over length of the line
 - Up to 4k additions on UHD!
 - Floating point calculations may be moved to fixed point
 - Must control accuracy of fixed point representation
 - Enough extra bits to hide accumulated error (>>12 bits for UHD)
• **DDA analysis**
 – Critical point: decision whether rounding up or down

• **Idea**
 – Integer-based decision through implicit functions
 – Implicit line equation
 • \(F(x, y) = ax + by + c = 0 \)
 – Here with \(y = mx + B = \frac{dy}{dx}x + B \) \(\Rightarrow \) \(0 = dy x - dx y + B \) \(dx \)
 • \(a = dy, \ b = -dx, \ c = Bdx \)
 – Results in
 • \(F(x, y) = dy x - dx y + dx B = 0 \)

\[
F(x, y) = 0
\]
\[
F(x, y) < 0
\]
\[
F(x, y) > 0
\]
• **Decision variable** d *(the midpoint formulation)*

 Assume we are at $x=i$, calculating next step at $x=i+1$

 Measures the vertical distance of midpoint from line:

 $$d_{i+1} = F(M_{i+1}) = F(x_i + 1, y_i + 1/2)$$

 $$= a(x_i + 1) + b(y_i + 1/2) + c$$

• **Preparations for the next pixel**

 IF ($d_{i+1} \leq 0$) // Increment in x only

 $$d_{i+2} = d_{i+1} + a = d_{i+1} + dy$$ // Incremental calculation

 ELSE // Increment in x and y

 $$d_{i+2} = d_{i+1} + a + b = d_{i+1} + dy - dx$$

 $$y = y + 1$$

 ENDFIF

 $$x = x + 1$$
Lines: Integer Bresenham

• **Initialization**
 \[d_1 = F\left(x_0 + 1, y_0 + \frac{1}{2}\right) = a(x_0 + 1) + b\left(y_0 + \frac{1}{2}\right) + c \]
 \[= ax_0 + by_0 + c + a + \frac{b}{2} = F(x_0, y_0) + a + \frac{b}{2} = a + \frac{b}{2} \]
 - Because \(F(x_0, y_0) \) is zero by definition (line goes through \((x_0, y_0)\))
 • Pixel is always set (but check consistency rules \(\rightarrow\) later)

• **Elimination of fractions**
 - Any positive scale factor maintains the sign of \(F(x, y) \)
 • \(2F(x_0, y_0) = 2(ax_0 + by_0 + c) \rightarrow d_{\text{start}} = 2a + b \)

• **Observation:**
 - When the start and end points have integer coordinates then
 \(b = -dx \) and \(a = dy \) are also integers
 • Floating point computation can be eliminated
 - No accumulated error
Lines: Arbitrary Directions

- 8 different cases
 - Driving (active) axis: ±X or ±Y
 - Increment/decrement of y or x, respectively

```
+Y,x--  +Y,x++  +X,y++  +X,y--
-X,y++  -X,y--  +Y,x--  +Y,x++
```

Diagram:

- Drawing showing the 8 different cases with arrows indicating the direction of movement along the axes.

Diagram:

- A diagram with arrows pointing in different directions, labeled with combinations of +Y,x-- and +Y,x++.
Thick Lines

- **Pixel replication**
 - Problems with even-numbered widths
 - Varying intensity of a line as a function of slope

- **The moving pen**
 - For some pen footprints the thickness of a line might change as a function of its slope
 - Should be as “round” as possible

- **Real Solution: Draw 2D area**
 - Allows for anti-aliasing and fractional width
 - Main approach these days!
Handling Start and End Points

- **End points handling (not available in current OpenGL)**
 - **Joining:** handling of joints between lines
 - Bevel: connect outer edges by straight line
 - Miter: join by extending outer edges to intersection
 - Round: join with radius of half the line width
 - **Capping:** handling of end point
 - Butt: end line orthogonally at end point
 - Square: end line with oriented square
 - Round: end line with radius of half the line width
Bresenham: Circle

• Eight different cases, here +X, y--

 Initialization: \(x = 0, \ y = R \)
 \(F(x, y) = x^2 + y^2 - R^2 \)
 \(d = F(x+1, \ y-1/2) \)
 IF \(d < 0 \)
 \(d = F(x+2, y-1/2) \)
 ELSE IF \(d > 0 \)
 \(d = F(x+2, y-3/2) \)
 \(y = y-1 \)
 ENDIF
 \(x = x+1 \)

 Works because slope is smaller than 1

• Eight-way symmetry: only one 45° segment is needed to determine all pixels in a full circle
Reminder: Polygons

Types
- Triangles
- Trapezoids
- Rectangles
- Convex polygons
- Concave polygons
- Arbitrary polygons
 - Holes
 - Non-coherent

Two approaches
- Polygon tessellation into triangles
 - Only option for OpenGL
 - Needs edge-flags for not drawing internal edges
 - Or separate drawing of the edge
- Direct scan-conversion
 - Mostly in early SW algorithms
Inside-Outside Tests

• **What is the interior of a polygon?**
 – Jordan curve theorem
 • “Any continuous *simple* closed curve in the plane, separates the plane into two disjoint regions, the inside and the outside, one of which is bounded.”

• **What to do with non-simple polygons?**
 – Even-odd rule (odd parity rule)
 • Counting the number of edge crossings with a ray starting at the queried point \(P \) till infinity
 • Inside, if the number of crossings is odd
 – Non-zero winding number rule
 • Counts # times polygon wraps around \(P \)
 – Signed intersections with a ray
 • Inside, if the number is not equal to zero
 – Differences only in the case of non-simple curves (e.g. self-intersection)
Triangle Rasterization

```
Raster3_box(vertex v[3])
{
    int x, y;
    bbox b;
    bound3(v, &b);
    for (y = b.ymin; y < b.ymax; y++)
        for (x = b.xmin; x < b.xmax; x++)
            if (inside(v, x, y)) // upcoming
                fragment(x,y);
}
```

- **Brute-force algorithm**
 - Iterate over all pixels within bounding box

- **Possible approaches for dealing with scissoring**
 - Scissoring: Only draw on AA-Box of the screen (region of interest)
 - Test triangle for overlap with scissor box, otherwise discard
 - Use intersection of scissor and bounding box, otherwise as above
Rasterization w/ Edge Functions

• **Approach (Pineda, `88)**
 - Implicit edge functions for every edge
 \[F_i(x, y) = ax + by + c \]
 - Point is *inside* triangle, if every
 \(F_i(x, y) \) has the same sign
 - Perfect for parallel evaluation at many points
 • Particularly with wide SIMD machines (GPUs, SIMD CPU instructions)
 - Requires “triangle setup”: Computation of edge function
 - Evaluation can also be done in homogeneous coordinates

• **Hierarchical approach**
 - Can be used to efficiently check large rectangular blocks of pixels
 • Divide screen into tiles/bins (possibly at several levels)
 • Evaluate \(F \) at tile corners
 • Recurse only where necessary, possibly until subpixel level
Gap and T-Vertices

- **Observations**
 - Pixels set can be non-connected
 - May have overlap and gaps at T-edges

Non-connected pixels: OK Not OK: Model must be changed
Problem on Edges

- **Consistency: edge singularity (shared by 2 triangles)**
 - What if term $d = ax+by+c = 0$ (pixel centers lies exactly on the line)
 - For $d <= 0$: pixels would get set twice
 - Problem with some algorithms
 - Transparency, XOR, CSG, ...
 - Missing pixels for $d < 0$ (set by no tri.)

- **Solution: “shadow” test**
 - Pixels are not drawn on the right and bottom edges
 - Pixels are drawn on the left and upper edges
 - Evaluated via derivatives a and b
 - Test for all edges also solves problem at vertices

```cpp
inside(value d, value a, value b) {
    // ax + by + c = 0
    return (d < 0) || (d == 0 && !shadow(a, b));
}

shadow(value a, value b) {
    return (a > 0) || (a == 0 && b > 0);
}
```
Ray Tracing vs. Rasterization

- **In-Triangle test (for common origin)**
 - Rasterization:
 - Project to 2D, clip
 - Set up 2D edge functions, evaluate for each sample (using 2D point)
 - Ray tracing:
 - Set up 3D edge functions, evaluate for each sample (using direction)
 - The ray tracing test can also be used for rasterization in 3D
 - Avoids projection & clipping

- **Enumerating scene primitives**
 - Rasterization (simple):
 - Linearly test them all in random order
 - Rasterization (advanced):
 - Build (coarse) spatial index (typically on application side)
 - Traverse with (large) view frustum
 - Every one separately when using tiled rendering
 - Ray Tracing:
 - Build (detailed) spatial index
 - Traverse with (infinitely thin) ray or with some (small) frustum
 - Both approaches can benefit greatly from spatial index
Ray Tracing vs. Rasterization (II)

• **Binning**
 – Test to (hierarchically) find pixels likely to be covered by a primitive
 – Rasterization:
 • Great speedup due to very large view frustum (many pixels)
 – Ray tracing (frustum tracing)
 • Can speed up, depending on frustum size [Benthin'09]
 – Ray Tracing (single/few rays)
 • Not needed

• **Conclusion**
 – Both algorithms can use the same in-triangle test
 • In 3D, requires floating point, but boils down to 2D computation
 – Both algorithms can benefit from spatial index
 • Benefit depends on relative cost of in-triangle test (HW vs. SW)
 – Both algorithms can benefit from 2D binning to find relevant samples
 • Benefit depends on ratio of covered/uncovered samples per frustum

• **Both approaches are essentially the same**
 – Different organization (size of frustum, binning)
 – There is no reason RT needs to be slower for primary rays (exc. FP)
Imagination-Grafikchip: 5 Mal schneller als GeForce GTX 980 Ti beim Raytracing

Fünf Mal schneller als eine GeForce GTX 980 Ti soll die Mobil-GPU PowerVR GR6500 sein, allerdings nur bei bestimmten Raytracing-Anwendungen.

Die Mobil-Grafikeinheit PowerVR GR6500 soll fünf Mal schneller arbeiten als Nvidias GeForce GTX 980 Ti bei nur einem Zehntel der Leistungsaufnahme; allerdings nur bei bestimmten Raytracing-Anwendungen.
HW-Supported Ray Tracing (finally)