Computer Graphics
- Volume Rendering -

Pascal Grittmann
Overview

• So far:
 • Light interactions with surfaces
 • Assume vacuum in and around objects

• This lecture:
 • Participating media
 • How to represent volumetric data
 • How to compute volumetric lighting effects
 • How to implement a very basic volume renderer
Underwater
Surface or volume?

source: Flickr
Fundamentals
Volumetric Effects

- Light interacts not only with surfaces but everywhere inside!
- Volumes scatter, emit, or absorb light

Approximation: Model Particle Density

- Modeling individual particles of a volume is, of course, not practical
- Instead, represent statistically using the average density
- (Same idea as, e.g., microfacet BSDFs)
Volume Representation

• Many possibilities (particles, voxel octrees, procedural,…)
• A common approach: Scene objects can “contain” a volume
Volume Representation

• Homogeneous:
 • Constant density
 • Constant absorption, scattering, emission,
 • Constant phase function (later)

• Heterogeneous:
 • Coefficients and/or phase function vary across the volume
 • Can be represented using 3D textures
 • (e.g., voxel grid, procedural)
Data Acquisition

- Real-world measurements via tomography
- Simulation, e.g.,
 - Fluids,
 - Fire and smoke,
 - Fog

https://docs.blender.org
Simulating Volumes
Mathematical Formulation of Volumetric Light Transport
So far: Assume Vacuum

• Compute $L_o(x, \omega_o)$ using the rendering equation
Volume Absorbs and Scatters Light

- Compute $L_o(x, \omega_o)$ using the rendering equation
- Only a fraction $T(a, b)L_o(x, \omega_o)$ arrives at the eye
Volume Emits Light

• Compute $L_o(x, \omega_o)$ using the rendering equation
• Only a fraction $T(a, b)L_o(x, \omega_o)$ arrives at the eye
• Every point z between a and b might emit light
Volume Scatters Light

• Compute $L_o(x, \omega_o)$ using the rendering equation
• Only a fraction $T(a, b)L_o(x, \omega_o)$ arrives at the eye
• Every point z between a and b might emit light
• Every point z might be illuminated through the volume
Attenuation

Computing Absorption and Out-Scattering
Attenuation = Absorption + Out-Scattering

• Every point in the volume might absorb light or scatter it in other directions
• Modeled by absorption and scattering densities: $\mu_a(z)$ and $\mu_s(z)$
• Might depend on position, direction, time, wavelength,…
• For simplicity: we assume only positional dependence
Computing Absorption – Intuition

• Consider a small segment Δz
• Along that segment, radiance is reduced from L to L'
• $L' = L - \mu_a L \Delta z$
• Where μ_a is the percentage of radiance that is absorbed (per unit distance)
Computing Absorption – Intuition

• Consider a small segment Δz
• Along that segment, radiance is reduced from L to L'
• $L' = L - \mu_a L \Delta z$
• Where μ_a is the percentage of radiance that is absorbed (per unit distance)

• Lets rewrite this:
• $\Delta L = L' - L = -\mu_a L \Delta z$
Computing Absorption – Exponential Decay

• $\Delta L = -\mu L \Delta z$
• For infinitely small Δz, this becomes
• $dL = -\mu L \, dz$
• A differential equation that models exponential decay!
• Solution: $L(a) = L_o(x) \, e^{-\int_a^b \mu_a(t) \, dt}$
Computing Out-Scattering

• Same as absorption, only different factor!
• $\mu_s(z)$: percentage of light scattered at point z
• $L(a) = L_0(x) \ e^{-\int_{b}^{a} \mu_s(t) \ dt}$
Computing Attenuation

• Fraction of light that is neither absorbed nor out-scattered
 • $\mu_t = \mu_a + \mu_s$
 • $L(a) = L_0(x) e^{-\int_b^a (\mu_a(t) + \mu_s(t)) \, dt}$
 • Attenuation: $T(a, b) = e^{-\int_b^a \mu_t(t) \, dt}$
Computing Attenuation – Homogeneous

- Simple case: constant density / attenuation
 - $\mu_t(z) = \mu_t \quad \forall z$

- $T(a, b) = e^{-\int_b^a \mu_t(t) \, dt} = e^{-(a-b)\mu_t}$
Estimating Attenuation

- We need to solve another integral:
 \[T(a, b) = e^{-\int_a^b \mu_t(t) \, dt} \]

- Many solutions, e.g., Monte Carlo integration (next semester)
- Simple solution: Quadrature
Estimating Attenuation – Ray Marching

• We need to solve another integral:
 • $T(a, b) = e^{-\int_a^b \mu_t(t) \, dt}$

• Simple solution: Quadrature
• Ray marching: evaluate at discrete positions (fixed stepsize Δz)
 • $\int_a^b \mu_t(t) \, dt \approx \sum_i \mu_t(z_i) \, \Delta z$
Emission

Explosions!

http://wikipedia.org
Every Point Might Emit Light

• Assume z emits $L_e(z)$ towards a
• Some of that light might be absorbed or out-scattered: It is attenuated
• $L(a) = L_e(z) \ T(z, a)$
Every Point Might Emit Light

• Assume z emits $L_e(z)$ towards a
• Some of that light might be absorbed or out-scattered: It is attenuated
 • $L(a) = L_e(z) \cdot T(z, a)$

• Happens at every point along the ray!
 • $L(a) = \int_{a}^{b} L_e(z) \cdot T(z, a) \, dz$

• Another integral...
Ray Marching for Emission

• Same as before: integrate via quadrature

\[\int_a^b L_e(z) T(z, a) \, dz \approx \sum_i L_e(z_i) T(z_i, a) \Delta z \]

• Attenuation \(T(z_i, a) \) estimated as before
Ray Marching for Emission

- Same as before: integrate via quadrature

\[\int_a^b L_e(z) T(z, a) \, dz \approx \sum_i L_e(z_i) \, T(z_i, a) \, \Delta z \]

- Attenuation \(T(z_i, a) \) estimated as before

- Attenuation can be incrementally updated:
 - \(T(z_i, a) = T(z_{i-1}, a) \, T(z_i, z_{i-1}) \)
 - (because it is an exponential function)
In-Scattering

Accounting for Reflections Inside the Volume
Direct Illumination

- Account for the (attenuated) direct illumination at every point z
- Similar to the rendering equation:
 \[L_o(z, \omega_o) = \int_{\Omega} L_i(x, \omega_i) f_p(\omega_i, \omega_o) \, d\omega_i \]
- Integration over the whole sphere Ω
- The phase function f_p takes on the role of the BSDF
Phase Functions

- \(L_o(z, \omega_o) = \int_{\Omega} L_i(x, \omega_i) f_p(\omega_i, \omega_o) \, d\omega_i \)
- Describe what fraction of light is reflected from \(\omega_i \) to \(\omega_o \)
- Similar to BSDF for surface scattering
- Simplest example: isotropic phase function
 - \(f_p(\omega_i, \omega_o) = \frac{1}{4\pi} \)
 - (energy conservation: \(\int_{\Omega} \frac{1}{4\pi} \, d\omega = 1 \))
Phase Functions: Henyey-Greenstein

- Widely used
- Easy to fit to measured data

\[f_p(\omega_i, \omega_o) = \frac{1}{4\pi} \frac{1-g^2}{(1+g^2+2g \cos(\omega_i, \omega_o))^3} \]

- \(g \): asymmetry (scalar)
- \(\cos(\omega_i, \omega_o) \): cosine of the angle formed by \(\omega_i \) and \(\omega_o \)
Henyey-Greenstein: Asymmetry Parameter

- $g = 0$: isotropic
- Negative g: back scattering
- Positive g: forward scattering

Forward Scattering

Back Scattering

http://commons.wikimedia.org

http://coclouds.com
How to Estimate Volume Direct Illumination

• Reflected radiance at a point \(z \):
\[
L_0(z, \omega_o) = \int_\Omega L_i(x, \omega_i) f_p(\omega_i, \omega_o) \, d\omega_i
\]

• In our framework:
 • Sum over all point lights (as for surfaces)
 • Trace shadow ray (as for surfaces)
 • Estimate attenuation along the shadow ray (as for surfaces)
Ray Marching to Compute In-Scattering

• Same as for emission
• Goal: estimate the integral $\int_a^b T(z, a) \mu_s(z) L_i(z) f_p \, dz$
• Quadrature:
 • $\int_a^b T(z, a) \mu_s(z) L_i(z) f_p \, dz \approx \sum_i T(z_i, a) \mu_s(z_i) L_i(z_i) f_p \, \Delta z$
Ray Marching to Compute In-Scattering

• Same as for emission

• Goal: estimate the integral \(\int_a^b T(z, a) L_i(z) f_p \, dz \)

• Quadrature:
 • \(\int_a^b T(z, a) L_i(z) f_p \, dz \approx \sum_i T(z_i, a) L_i(z_i) f_p \Delta z \)

• Attenuation \(T(z_i, a) \) estimated as before

• Attenuation can be incrementally updated:
 • \(T(z_i, a) = T(z_{i-1}, a) \, T(z_i, z_{i-1}) \)
 • (because it is an exponential function)
Putting it all Together

A Simple Volume Integrator
A Simple Volume Integrator

- Estimate direct illumination at x (as before)
- If volume: continue straight ahead until no volume (yields intersections y, z)
A Simple Volume Integrator

• Estimate direct illumination at x (as before)
• If volume: continue straight ahead until no volume (yields intersections y, z)
• Ray marching to estimate attenuation, emission,
A Simple Volume Integrator

- Estimate direct illumination at x (as before)
- If volume: continue straight ahead until no volume (yields intersections y, z)
- Ray marching to estimate attenuation, emission, and in-scattering
 - Shadow rays to the lights + ray marching to compute attenuation
A Simple Volume Integrator

- Estimate direct illumination at x (as before)
- If volume: continue straight ahead until no volume (yields intersections y, z)
- Ray marching to estimate attenuation, emission, and in-scattering
 - Shadow rays to the lights + ray marching to compute attenuation
- Compute illumination at z (as before)
A Simple Volume Integrator

• Estimate direct illumination at x (as before)
• If volume: continue straight ahead until no volume (yields intersections y, z)
• Ray marching to estimate attenuation, emission, and in-scattering
 • Shadow rays to the lights + ray marching to compute attenuation
• Compute illumination at z (as before)
• Add together:
 • Attenuated illumination from z
 • Volumetric emission along \(\overline{xy} \)
 • In-scattering along \(\overline{xy} \)
 • Direct illumination at x
A Simple Volume Integrator

- Estimate direct illumination at x (as before)
- If volume: continue straight ahead until no volume (yields intersections y, z)
- Ray marching to estimate attenuation, emission, and in-scattering
 - Shadow rays to the lights + ray marching to compute attenuation
- Compute illumination at z (as before)
- Add together:
 - Attenuated illumination from z
 - Volumetric emission along \vec{xy}
 - In-scattering along \vec{xy}
 - Direct illumination at x

Multiply by BTDF!