Computer Graphics

Sampling Theory & Anti-Aliasing

Philipp Slusallek
• **Constant & δ-function**
 - flash

• **Comb/Shah function**

\[
h(x) = \sum_{k=-\infty}^{\infty} \delta(x - k\Delta x) \\
H(u) = \frac{1}{\Delta x} \sum_{k=-\infty}^{\infty} \delta(u - k/\Delta x)
\]
Dirac Comb (2)

- **Constant & δ-Function**
 - Duality
 \[f(x) = K \]
 \[F(\omega) = K \delta(\omega) \]
 - And vice versa

- **Comb function**
 - Duality: the dual of a comb function is again a comb function
 - Inverse wavelength
 - Amplitude scales with inverse wavelength

\[
f(x) = \sum_{k=-\infty}^{\infty} \delta(x - k\Delta x)\]

\[
F(\omega) = \frac{1}{\Delta x} \sum_{k=-\infty}^{\infty} \delta\left(\omega - k \frac{1}{\Delta x}\right)\]
Sampling

- **Continuous function**
 - Assume band-limited
 - Finite support of Fourier transform
 - Depicted here as triangle-shaped finite spectrum (not meant to be a tent function)

- **Sampling at discrete points**
 - Multiplication with Comb function in spatial domain
 - Corresponds to convolution in Fourier domain
 \[\Rightarrow \text{Multiple copies of the original spectrum (convolution theorem!)} \]

- **Frequency bands overlap?**
 - No: good
 - Yes: aliasing artifacts
Reconstruction

- **Only original frequency band desired**
- **Filtering**
 - In Fourier domain:
 - Multiplication with windowing function around origin
 - In spatial domain
 - Convolution with inverse Fourier transform of windowing function
- **Optimal filtering function**
 - Box function in Fourier domain
 - Corresponds to \textit{sinc} in space domain
 - Unlimited region of support
 - Spatial domain only allows approximations due to finite support
Reconstruction Filter

- Cutting off the spatial support of the \(\text{sinc} \) function is NOT a good solution
 - Re-introduces high-frequencies \(\Rightarrow \) spatial ringing

\[f(x) \]
\[F(u) \]

(a)

(b)
Sampling and Reconstruction

Original function and its band-limited frequency spectrum

Signal sampling beyond Nyquist:
Mult./conv. with comb
Frequency spectrum is replicated
Comb dense enough (sampling rate > 2*bandlimit)
Bands do not overlap

Ideal filtering
Fourier: box (mult.)
Space: sinc (conv.)
Only one copy
Sampling and Reconstruction

Reconstruction with ideal $sinc$
Identical signal

Non-ideal filtering
Fourier: $sinc^2$ (mult.)
Space: tent (conv.)
Artificial high frequen.
are not cut off
⇒ Aliasing artifacts

Reconstruction with tent function
(= piecewise linear interpolation)
Sampling at Too Low Frequency

Original function and its band-limited frequency spectrum

Signal sampling below Nyquist:
Mult./conv. with comb
Comb spaced too far (sampling rate ≤ 2*bandlimit)
Spectral band overlap: artificial low frequency

Ideal filtering
Fourier: box (mult.)
Space: sinc (conv.)
Band overlap in frequency domain cannot be corrected
⇒ Aliasing
Sampling at Too Low Frequency

Reconstruction with ideal sinc

Reconstruction fails (frequency components wrong due to aliasing !)

Non-ideal filtering

Fourier: sinc² (mult.)
Space: tent (conv.)

Artificial high frequen. are not cut off
⇒ Aliasing artifacts

Reconstruction with tent function (= piecewise linear interpolation)

Even worse reconstruction
Aliasing

• High frequency components from the replicated copies are treated like low frequencies during the reconstruction process

• In Fourier space:
 – Original spectrum
 – Sampling comb
 – Resulting spectrum
 – Reconstruction filter
 – Reconstructed spectrum

• Different signals become “aliases” when sampled
Aliasing in 1D

Spatial frequency < Nyquist

Spatial frequency = Nyquist
2 samples / period

Spatial frequency > Nyquist

Spatial frequency >> Nyquist
Aliasing in 2D

This original image sampled at these locations yields this reconstruction.
Aliasing in 2D

- Spatial sampling \Rightarrow repeated frequency spectrum
- Spatial conv. with box filter \Rightarrow spectral mult. with sinc
Causes for Aliasing

• It all comes from sampling at discrete points
 – Multiplied with comb function
 – Comb function: repeats frequency spectrum

• Issue when using non-band-limited primitives
 – Hard edges → infinitely high frequencies

• In reality, integration over finite region necessary
 – E.g., finite CCD pixel size, integrates in the analog domain

• Computer: analytic integration often not possible
 – No analytic description of radiance or visible geometry available

• Only way: numerical integration
 – Estimate integral by taking multiple point samples, average
 • Leads to aliasing
 – Computationally expensive & approximate

• Important:
 – Distinction between sampling errors and reconstruction errors
Sampling Artifacts

• **Spatial aliasing**
 – Stair cases, Moiré patterns (interference), etc…

• **Solutions**
 – Increasing the sampling rate
 • OK, but infinite frequencies at sharp edges
 – Post-filtering (after reconstruction)
 • Too late, does not work - only leads to blurred stair cases
 – Pre-filtering (blurring) of sharp geometry features
 • Slowly make geometry “fade out” at the edges?
 • Correct solution in principle, but blurred images might not be useful
 • Analytic low-pass filtering hard to implement
 – Super-sampling (see later)
 • On the fly re-sampling: densely sample, filter, down sample
Sampling Artifacts in 4D

- **Temporal aliasing**
 - Video of cart wheel, ...

- **Solutions**
 - Increasing the frame rate
 - OK
 - Post-filtering (averaging several frames)
 - Does not work – only multiple details
 - Pre-filtering (motion blur)
 - Should be done on the original analog signal
 - Possible for simple geometry (e.g., cartoons)
 - Problems with texture, etc…
 - Super-sampling (see later)
Antialiasing by Pre-Filtering

• **Filtering before sampling**
 - Analog/analytic original signal
 - Band-limiting the signal
 - Reduce Nyquist frequency for chosen sampling-rate

• **Ideal reconstruction**
 - Convolution with $sinc$

• **Practical reconstruction**
 - Convolution with
 • Box filter, Bartlett (tent)
 → Reconstruction error
Sources of High Frequencies

- **Geometry**
 - Edges, vertices, sharp boundaries
 - Silhouettes (view dependent)
 - ...

- **Texture**
 - E.g., checkerboard pattern, other discontinuities, ...

- **Illumination**
 - Shadows, lighting effects, projections, ...

- **Analytic filtering almost impossible**
 - Even with the most simple filters
Comparison

• **Analytic low-pass filtering (pixel/triangle overlap)**
 – Ideally eliminates aliasing completely
 – Hard to implement
 • Weighted or unweighted area evaluation
 • Compute distance from pixel to a line
 • Filter values can be stored in look-up tables
 – Possibly taking into account slope
 – Distance correction
 – Non-rotationally symmetric filters
 • Does not work at corners

• **Over-/Super-sampling**
 – Very easy to implement
 – Does not eliminate aliasing completely
 • Sharp edges contain *infinitely* high frequencies
 – But it helps: …
Re-Sampling Pipeline

• **Assumption**
 – Energy in higher frequencies typically decreases quickly
 – Reduced aliasing by intermediate sampling at higher frequency

• **Algorithm**
 – Super-sampling
 • Sample continuous signal with high frequency f_1
 • Aliasing with energy beyond f_1 (assumed to be small)
 – Reconstruction of signal
 • Filtering with $g_1(x)$: e.g. convolution with $sinc_{f_1}$
 • Exact representation with sampled values !!
 – Analytic low-pass filtering of signal
 • Filtering with filter $g_2(x)$ where $f_2 << f_1$
 • Signal is now band-limited w.r.t. f_2
 – Re-sampling with a sampling frequency that is compatible with f_2
 • No additional aliasing
 – Filters $g_1(x)$ and $g_2(x)$ can be combined
Super-Sampling in Practice

- Regular super-sampling
 - Averaging of N samples per pixel
 - N: 4 (quite good), 16 (often sufficient)
 - Samples: rays, z-buffer, motion, reflection, ...
 - Filter weights
 - Box filter
 - Others: B-spline, pyramid (Bartlett), hexagonal, ...
 - Sampling Patterns (left to right)
 - Regular: aliasing likely
 - Random: often clumps, incomplete coverage
 - Poisson Disc: close to perfect, but costly
 - Jittered: randomized regular sampling
 - Most often: rotated grid pattern
Super-Sampling Caveats

- **Popular mistake**
 - Sampling at the corners of every pixel
 - Pixel color by averaging from corners
 - Free super-sampling ??

- **Problem**
 - Wrong reconstruction filter !!!
 - Same sampling frequency, but post-filtering with a tent function
 - Blurring: loss of information

- **Post-reconstruction blur**

- **There is no “free” Super-sampling**
Adaptive Super-Sampling

• **Idea: locally adapt sampling density**
 – Slowly varying signal: low sampling rate
 – Strong changes: high sampling rate

• **Decide sampling density locally**

• **Decision criterion needed**
 – Differences of pixel values
 – Contrast (relative difference)
 • $\frac{|A-B|}{(|A|+|B|)}$
Adaptive Super-Sampling

• **Recursive algorithm**
 – Sampling at pixel corners and center
 – Decision criterion for corner-center pairs
 • Differences, contrast, object-IDs, ray trees, ...
 – Subdivide quadrant by adding 3 diag. points
 – Filtering with weighted averaging
 • Tile: ¼ from each quadrant
 • Leaf quadrant: ½ (center + corner)
 – Box filter with final weight proport. to area →

\[
\frac{1}{4} \left(\frac{A+E}{2} + \frac{D+E}{2} + \frac{1}{4} \left[\frac{F+G}{2} + \frac{B+G}{2} + \frac{H+G}{2} + \frac{1}{4} \left(\frac{J+K}{2} + \frac{G+K}{2} + \frac{L+K}{2} + \frac{E+K}{2} \right) \right] \right) \\
+ \frac{1}{4} \left[\frac{E+M}{2} + \frac{H+M}{2} + \frac{N+M}{2} + \frac{1}{4} \left(\frac{M+Q}{2} + \frac{P+Q}{2} + \frac{C+Q}{2} + \frac{R+Q}{2} \right) \right]
\]

• **Extension**
 – Jittering of sample points
Stochastic Super-Sampling

• **Problems with regular super-sampling**
 – Nyquist frequency for aliasing only shifted
 – Expensive: 4-fold to 16-fold effort
 – Non-adaptive: same effort everywhere
 – Too regular: reduction of effective number of axis-aligned levels

• **Introduce irregular sampling pattern**

0 → 4/16 → 8/16 → 12/16 → 16/16: 5 levels

17 levels: better, but noisy

• **Stochastic super-sampling**
 – Or analytic computation of pixel coverage and pixel mask
Stochastic Sampling

• **Requirements**
 – Even sample distribution: no clustering
 – Little correlation between positions: no alignment
 – Incremental generation: on demand as needed

• **Generation of samples**
 – Poisson-disk sampling
 • Random generation of samples
 • Rejection if closer than min distance to other samples
 – Jittered sampling
 • Random perturbation from regular positions
 – Stratified sampling
 • Subdivision into areas with one random sample in each
 • Improves even distribution
 – Quasi-random numbers (Quasi-Monte Carlo)
 • E.g. Halton sequence
 • Advanced feature: see RIS course for more details
• **Motivation**
 – Distribution of the optical receptors on the retina (here: ape)

Distribution of the photo-receptors

Fourier analysis

© Andrew Glassner, Intro to Raytracing
Stochastic Sampling

- **Slowly varying function in sample domain**
 - Closely reconstructs target value with few samples

- **Quickly varying function in sample domain**
 - Transforms energy in high-frequency bands into noise
 - Reconstructs average value as sample count increases
Examples

- **Spatial sampling: triangle comb**
 - (c) 1 sample/pixel, no jittering: aliasing
 - (d) 1 spp, jittering: noise
 - (e) 16 spp, no jittering: less aliasing
 - (f) 16 spp, jittering: less noise

- **Temporal sampling: motion blur**
 - (a) 1 time sample, no jittering: aliasing
 - (b) 1 time sample, jittering/pixel: noise
 - (c) 16 samples, no jittering: less aliasing
 - (d) 16 samples, jittering/pixel: less noise
Comparison

- Regular, 1x1
- Regular, 3x3
- Regular, 7x7
- Jittered, 3x3
- Jittered, 7x7