Computer Graphics

- Spatial Index Structures -

Philipp Slusallek
Motivation

• **Tracing rays in \(O(n) \) is too expensive**
 – Need hundreds of millions rays per second
 – Scenes consist of millions of triangles

• **Reduce complexity through pre-sorting data**
 – **Spatial index structures**
 • Dictionaries of objects in 3D space
 • Eliminate intersection candidates as early as possible
 • Can reduce complexity to \(O(\log n) \) on average
 – Worst case complexity is still \(O(n) \)
 • *Private exercise: Come up with a worst case example*
Acceleration Strategies

- **Faster ray-primitive intersection algorithms**
 - Does not reduce complexity, “only” a constant factor (but relevant!)

- **Less intersection candidates**
 - Spatial indexing structures
 - (Hierarchically) partition space or the set of objects
 - Examples
 - Grids, hierarchies of grids
 - Octrees
 - Binary space partitions (BSP) or kd-trees
 - Bounding volume hierarchies (BVH)
 - Directional partitioning (not very useful)
 - 5D partitioning (space and direction, once a big hype)
 - Close to pre-compute visibility for all points and all directions

- **Tracing of continuous bundles of rays**
 - Exploits coherence of neighboring rays, amortize cost among them
 - Frustum tracing, cone tracing, beam tracing, ...
Aggregate Objects

- Object that holds groups of objects
- Conceptually stores bounding box and list of children
- Useful for instancing (placing collection of objects repeatedly) and for Bounding Volume Hierarchies
Bounding Volumes

• **Observation**
 – BVs (tightly) bound geometry, ray must intersect BV first
 – Only compute intersection if ray hits BV

• **Sphere**
 – Very fast intersection computation
 – Often inefficient because too large

• **Axis-aligned bounding box (AABB)**
 – Very simple intersection computation (min-max)
 – Sometimes too large

• **Non-axis-aligned box**
 – A.k.a. „oriented bounding box (OBB)“
 – Often better fit
 – Fairly complex computation

• **Slabs**
 – Pairs of half spaces
 – Fixed number of orientations/axes: e.g. x+y, x-y, etc.
 • Pretty fast computation
Bounding Volume Hierarchies (BVHs)

• **Definition**
 – Hierarchical partitioning of a set of objects

• **BVHs form a tree structure**
 – Each inner node stores a volume enclosing all sub-trees
 – Each leaf stores a volume and pointers to objects
 – All nodes are aggregate objects
 – Usually every object appears once in the tree
 • Except for instancing
Bounding Volume Hierarchies (BVHs)

- Hierarchy of groups of objects
BVH traversal (1)

- **Accelerate ray tracing**
 - By eliminating intersection candidates

- **Traverse the tree**
 - Consider only objects in leaves intersected by the ray
BVH traversal (2)

- **Accelerate ray tracing**
 - By eliminating intersection candidates
- **Traverse the tree**
 - Consider only objects in leaves intersected by the ray
BVH traversal (3)

- **Accelerate ray tracing**
 - By eliminating intersection candidates

- **Traverse the tree**
 - Consider only objects in leaves intersected by the ray
 - Cheap traversal instead of costly intersection
Object vs. Space Partitioning

- **Object partitioning**
 - BVHs hierarchical partition *objects* into groups
 - Create spatial index by spatially bounding each subgroup
 - Subgroups may be overlapping!

- **Space partitioning**
 - (Hierarchically) partitions *space* in subspaces
 - Subspaces are non-overlapping and completely fill parent space
 - Organize them in a structure (tree or table)

- **Next: Space partitioning**
Uniform Grids

- **Definition**
 - Regular partitioning of space into equal-size cells
 - Non-hierarchical structure

- **Resolution**
 - Want: number of cells in $O(n)$
 - Resolution in each dimension proportional to $\frac{3\sqrt{n}}{\lambda}$
 - Usually $R_{x,y,z} = d_{x,y,z} \sqrt[3]{\frac{\lambda n}{V}}$

 - d: diagonal of box (a vector)
 - n: #objects
 - V: volume of Bbox
 - λ: density (user-defined)
Uniform Grid Traversal

- **Grids are cheap to traverse**
 - 3D-DDA, modified Bresenham algorithm (see later)
 - Step through the structure cell by cell
 - Intersect with primitives inside non-empty cells

- **Mailboxing**
 - Single primitive can be referenced in many cells
 - Avoid multiple intersections
 - Keep track of intersection tests
 - Per-object cache of ray IDs
 - Problem with concurrent access
 - Per-ray cache of object IDs
 - Data local to a ray (better!)
Nested Grids

- **Problem: „Teapot in a stadium“**
 - Uniform grids cannot adapt to local density of objects
- **Nested Grids**
 - Hierarchy of uniform grids: Each cell is itself a grid
 - Fast algorithms for building & traversal (Kalojanov et al. ´09,´11)

Cells of uniform grid (colored by # of intersection tests)

Same for two-level grid
Irregular Grids

- **Irregular grids can accel traversal** [Perard-Gayot´17]
 - Build grid (hierarchical) base grid (power of 2, adapts to scene)
 - Base grid defines minimum resolution for computation
 - Neighboring cells can be *merged* (eagerly)
 - As long as no change in set of primitives
 - Can also *expand* cells (for exit operations)
 - As long as neighbors contain only subset of cells primitives
 - Allows for making larger steps
 - Approach needs more memory

![Construction (merge & expand)](image)

![Traversal (simplified)](image)
Octrees and Quadtrees

- **Octree**
 - Hierarchical space partitioning ("simplest hierarchical grid")
 - Each inner node contains 8 (2x2x2 grid) equally sized voxels

- **Quadtrees**
 - 2D "octree"

- **Adaptive subdivision**
 - Adjust depth to local scene complexity
BSP Trees

• Definition
 – Binary Space Partition Tree (BSP)
 – Recursively split space with planes
 • Arbitrary split positions
 • Arbitrary orientations

• Used for visibility computation
 – E.g. in games (Doom)
 – Enumerating objects in back to front order
kD-Trees

• **Definition**
 – **Axis-Aligned** Binary Space Partition Tree
 – Recursively split space with axis-aligned planes
 • Arbitrary split positions
 • Greatly simplifies/accelerates computations
kD-Tree Example (1)
kD-Tree Example (2)
kD-Tree Example (3)
kD-Tree Example (4)
kD-Tree Example (5)
kD-Tree Example (6)
kD-Tree Example (7)
kD-Tree Traversal

• “Front-to-back” traversal
 – Traverse child nodes in order along rays

• Termination criterion
 – Traversal can be terminated as soon as surface intersection is found in the current node

• Maintain stack of sub-trees still to traverse
 – More efficient than recursive function calls
 – Algorithms with no or limited stacks are also available (for GPUs)
kD-Tree Traversal (1)
kD-Tree Traversal (2)
kD-Tree Traversal (4)
kD-Tree Traversal (5)

Current: C

Stack:
kD-Tree Traversal (6)

Current: D Stack: L3
kD-Tree Traversal (7)
kD-Tree Traversal (8)

Current: △ △

Stack: L5 L3
kD-Tree Traversal (9)

Current: △ △
Result: △
Stack: L5 L3
kD-Tree Traversal (10)

Current: △ △
Result: △
Stack: L5 L3
CANNOT terminate !!!
kD-Tree Traversal (11)

Current: △ △
Result: △
Stack: L5 L3

CANNOT terminate !!!
kD-Tree Properties

- **kD-Trees**
 - Split space instead of sets of objects
 - Split into disjoint, fully covering regions

- **Adaptive**
 - Can handle the “Teapot in a Stadium” well

- **Compact representation**
 - Relatively little memory overhead per node
 - Node stores:
 - Split location (1D), child pointer (to both children), Axis-flag (often merged into pointer)
 - Can be compactly stored in 8 bytes
 - But replication of objects in (possibly) many nodes
 - Can greatly increase memory usage

- **Cheap Traversal**
 - One subtraction, multiplication, decision, and fetch
 - But many more cycles due to instruction dependencies
Overview: kD-Trees Construction

- Adaptive
- Compact
- Cheap traversal
Exploit Advantages

- **Adaptive**
 - You have to build a good tree

- **Compact**
 - At least use the compact node representation (8-byte)
 - You can’t be fetching whole cache lines every time

- **Cheap traversal**
 - No sloppy inner loops! (one subtract, one multiply!)
Building kD-trees

• **Given:**
 – Axis-aligned bounding box ("cell")
 – List of geometric primitives (triangles?) touching cell

• **Core operation:**
 – Pick an axis-aligned plane to split the cell into two parts
 – Sift geometry into two batches (some redundancy)
 – Recurse
Building kD-trees

- **Given:**
 - Axis-aligned bounding box ("cell")
 - List of geometric primitives (triangles?) touching cell

- **Core operation:**
 - Pick an axis-aligned plane to split the cell into two parts
 - Sift geometry into two batches (some redundancy)
 - Recurse
 - Termination criteria!
“Intuitive” kD-Tree Building

• **Split Axis**
 – Round-robin; largest extent

• **Split Location**
 – Middle of extent; median of geometry (balanced tree)

• **Termination**
 – Target # of primitives, limited tree depth
“Intuitive” kD-Tree Building

- **Split Axis**
 - Round-robin; largest extent
- **Split Location**
 - Middle of extent; median of geometry (balanced tree)
- **Termination**
 - Target # of primitives, limited tree depth
- All of these techniques are **NOT** very clever
Building good kD-trees

- **What split do we really want?**
 - Clever Idea: The one that makes ray tracing cheap
 - Write down an expression of cost and minimize it
 \[\text{Cost Optimization} \]

- **What is the cost of tracing a ray through a cell?**
 - **Surface Area Heuristic (SAH)**
 \[
 \text{Cost}(\text{cell}) = C_{\text{trav}} + \text{Prob(hit L)} \times \text{Cost(L)} + \text{Prob(hit R)} \times \text{Cost(R)}
 \]
 - Cost of traversal of the inner node itself, plus
 - Relative probability of hitting one child, times
 - Cost of hitting that child
 - Same for other child
Splitting with Cost in Mind
Split in the middle

- Makes the L & R probabilities equal
- Pays no attention to the L & R costs
Split at the Median

- Makes the L & R costs equal
- Pays no attention to the L & R probabilities
Cost-Optimized Split

- Automatically and rapidly isolates complexity
- Produces large chunks of empty space
Building good kD-trees

• Need the probabilities
 – Turns out to be proportional to *surface area* (SA)
 – *Not* the volume

• Need the child cell costs
 – Simple *triangle count* works great (very rough approx.)
 – Many attempts to improve this did not work out

\[
\text{Cost}(c) = C_{\text{trav}} + \text{Prob(hit L)} \times \text{Cost(L)} + \text{Prob(hit R)} \times \text{Cost(R)}
\]

\[
= C_{\text{trav}} + \frac{\text{SA(L)}}{\text{SA(c)}} \times \text{TriCount(L)} + \frac{\text{SA(R)}}{\text{SA(c)}} \times \text{TriCount(R)}
\]
Termination Criteria

• **When should we stop splitting?**
 – Another clever idea: When splitting does not help any more.
 – Use the cost estimates in your termination criteria

• **Threshold of cost improvement**
 – But stretch decision over multiple levels, to avoid local minima

• **Threshold of cell size**
 – Absolute (!) probability so small there is no point in going on
Building good kD-trees

• **Basic build algorithm**
 – Pick an axis, or optimize across all three
 – Build a set of candidate split locations
 • Based on BBox of triangles (in/out events) or
 • Predefined locations (fixed number of bins across bbox axis)
 – Sort the triangle events or bin them
 – Walk through candidates to find minimum cost split

• **Characteristics of the tree you’re looking for**
 – Deep and thin
 – Typical depth of 50-100,
 – About 2 triangles per leaf,
 – Big empty cells
Building kD-trees quickly

- **Very important to build good trees first**
 - Otherwise you have no basis for comparison

- **Don’t give up cost optimization!**
 - Use the math, Luke…

- **Luckily, lots of flexibility…**
 - Axis picking ("hack" pick vs. full optimization)
 - Candidate picking (bboxes, exact; binning, sorting)
 - Termination criteria ("knob" controlling tradeoff)
Building kD-trees quickly

• **Remember, profile first! Where’s the time going?**
 – Split personality
 • Memory traffic all at the top (NO cache misses at bottom)
 – Sifting through bajillion triangles to pick one split (!)
 – Hierarchical building?
 • Computation mostly at the bottom
 – Lots of leaves, need more exact candidate info
 – Lazy building?
 • Change criteria during the build?
Fast Ray Tracing w/ kD-Trees

• Adaptive
 – Build a cost-optimized kD-tree w/ the surface area heuristic
• Compact
• Cheap traversal
What’s in a node?

- A kD-tree internal node needs:
 - Am I a leaf?
 - Split axis
 - Split location
 - Pointers to children
Compact (8-byte) Nodes

- **kD-Tree node can be packed into 8 bytes**
 - Split location
 - 32 bit float
 - Always two children, put them side-by-side
 - Only one 32-bit pointer
 - Leaf flag + Split axis
 - 2 bits
Compact (8-byte) Nodes

- **kD-Tree node can be packed into 8 bytes**
 - Split location
 - 32 bit float
 - Always two children, put them side-by-side
 - Only one 32-bit pointer
 - Leaf flag + Split axis
 - 2 bits

- **So close! Sweep those 2 bits under the rug...**
 - Encode bits in lowest 2 bits of pointer
 - Bits are not used as structure is multiple of 8, anyway
No Bounding Box!

- kD-Tree node corresponds to an AABB
- Does not mean it has to *contain* one
 - Would be 24 bytes: 4X explosion (!)
Memory Layout

• **Cache lines are much bigger than 8 bytes!**
 – Advantage of compactness lost with poor layout

• **Pretty easy to do something reasonable**
 – Building depth first, watching memory allocator
Other Data

• Memory should be separated by rate of access
 – Frames
 – << Pixels
 – << Samples [Ray Trees]
 – << Rays [Shading (not quite)]
 – << Triangle intersections
 – << Tree traversal steps

• Example: pre-processed triangle, shading info…
Fast Ray Tracing w/ kD-Trees

- **Adaptive**
 - Build a cost-optimized kD-tree w/ the surface area heuristic

- **Compact**
 - Use an 8-byte node
 - Lay out your memory in a cache-friendly way

- **Cheap traversal**
kD-Tree Traversal Operation

- **Maintain on a stack**
 - Entry and exit distance to node (t_near and t_far)

- **Three cases**
 - $t_{\text{split}} > t_{\text{far}}$: Go only to near node
 - $t_{\text{near}} < t_{\text{split}} < t_{\text{far}}$: Go to both (use stack)
 - $t_{\text{split}} < t_{\text{near}}$: Go only to far node

- **Near and far depend on direction of ray!**
kD-Tree Traversal: Inner Loop

Given (node, t_near, t_far)
while (! node.isLeaf())
{
 t_at_split = (split_location - ray->origin[split_axis]) * ray->inv_dir[split_axis]
 if (t_split <= t_min)
 continue with (far child, t_split, t_far) // hit either far child or none
 if (t_split >= t_max)
 continue with (near child, t_min, t_split) // hit near child only
 // hit both children
 push (far child, t_split, t_max) onto stack
 continue with (near child, t_min, t_split)
}
Optimize Your Inner Loop

- **kD-Tree traversal is the most critical kernel**
 - It happens about a zillion times
 - It’s tiny
 - Sloppy coding *will* show up

- **Optimize, Optimize, Optimize**
 - Remove recursion and minimize stack operations
 - Other standard tuning & tweaking
Can it go faster?

- How do you make fast code go faster?
- Parallelize it!
 - Not covered here
Directional Partitioning

• **Applications**
 – Useful only for rays that start from a single point
 • Camera
 • Point light sources
 – Preprocessing of visibility
 – Requires scan conversion of geometry
 • For each object locate where it is visible
 • Expensive and linear in # of objects
 – Generally not used for primary rays

• **Variation: Light buffer (for shadow rays)**
 – Lazy and conservative evaluation
 – Store last found occluder in directional structure
 – Test entry first for next shadow test
Ray Classification

- **Partitioning of space and direction [Arvo & Kirk´87]**
 - Roughly pre-computes visibility for the entire scene
 - What is visible from each point in each direction?
 - Very costly preprocessing, cheap traversal
 - Improper trade-off between preprocessing and run-time
 - Memory hungry, even with lazy evaluation
 - Seldom used in practice

![Diagram](image_url)
Packet Tracing

• **Approach**
 – Combine many similar rays (e.g. primary or shadow rays)
 – Trace them together in SIMD fashion
 • All rays perform the same traversal operations
 • All rays intersect the same geometry
 • Can use SIMD instructions in modern processors
 – Exposes coherence between rays
 • All rays touch similar spatial indices
 • Loaded data can be reused (in registers & cache)
 • More computation per recursion step → better optimization
 – **Overhead**
 • Rays will perform unnecessary operations
 • Overhead low for coherent and small set of rays (e.g. up to 4x4 rays)

• **Needs an API that provides coherent sets of rays**
Beam Tracing
Beam and Cone Tracing

• **General idea:**
 – Trace continuous bundles of rays

• **Cone Tracing:**
 – Approximate collection of ray with cone(s)
 – Subdivide into smaller cones if necessary

• **Beam Tracing:**
 – Exactly represent a ray bundle with pyramid
 – Create new beams at intersections (polygons)

• **Problems:**
 – Clipping of beams?
 – Good approximations?
 – How to compute intersections?

• **Not really practical !!**
Frustum Tracing

- **Bound set of rays with frustum (NOT frustrum!!)**
 - Only during traversal
 - API needs to provide coherent groups of rays
 - Possibly hierarchically

- **Traverse spatial index with frustum**
 - Small overhead (largely avoided by SIMD)
 - Compute with 4 corner rays
 - Avoid traversing many rays individually
 - Particularly beneficial in the upper levels of index
 - Switch to (packets of) rays when needed (intersection)
 - Might be able to only use subset (e.g. based on extend of triangle)
 - Split frustum hierarchically and traverse separately in lower levels
 - Avoids overhead of carrying to many rays into small nodes

- **E.g. fast primary ray traversal by W. Hunt (Oculus)**
Distribution Ray Tracing

- Formerly called Distributed Ray Tracing [Cook`84]
- **Stochastic Sampling of**
 - Pixel: Antialiasing
 - Lens: Depth-of-field
 - BRDF: Glossy reflections
 - Lights: Smooth shadows from area light sources
 - Time: Motion blur

- **Covered in detail in RIS course**