Computer Graphics

- Introduction to Ray Tracing -

Philipp Slusallek

Rendering Algorithms

 Rendering
— Definition: Given a 3D scene as input and a camera, generate a
2D image as a view from the camera of the 3D scene
« Algorithms
— Ray Tracing
» Declarative scene description
» Physically-based simulation of light transport
— Rasterization
» Traditional procedural/imperative drawing of a scene content

Scene

Surface Geometry
— 3D geometry of objects in a scene
— Geometric primitives — triangles, polygons, spheres, ...

Surface Appearance

— Color, texture, absorption, reflection, refraction, subsurface
scattering

— Mirror, glass, glossy, diffuse, ...

lllumination
— Position and emission characteristics of light sources
— Note: Light is reflected off of surfaces!
« Secondary/indirect/global illumination
— Assumption: air/empty space is totally transparent

« Simplification that excludes scattering effects in participating media
volumes

 Later also volume objects, e.g. smoke, solid object (CT scan), ...

Camera
— View point, viewing direction, field of view, resolution, ...

OVERVIEW OF RAY-TRACING

Ray Tracing Can...

 Produce Realistic Images
— By simulating light transport

' /) y
- R i IaTaYATA [4‘\

] 3 S o

Light Transport (1)

Light Source
I Camera Image Plane 4

Light Transport (2)

* Light Distribution in a Scene
— Dynamic equilibrium

 Forward Light Transport
— Shoot photons from the light sources into scene
— Reflect at surfaces and record when a detector is hit
» Photons that hit the camera produce the final image
« Most photons will not reach the camera
— Particle Tracing

« Backward Light Transport
— Start at the detector (camera)
— Trace only paths that might transport light towards it
« May try to connect to occluded light sources
— Ray Tracing

Ray Tracing Is...

Automatic, simple and intuitive
— Easy to understand and implement
— Delivers “correct” images by default

Powerful and efficient

— Many optical global effects

— Shadows, reflections, refractions, ...
— Efficient real-time implementation in SW and HW

— Can work in parallel and distributed environments

— Logarithmic scalability with scene size: O(log n) vs. O(n)
— Output sensitive and demand driven

Concept of light rays Is not new
— Empedocles (492-432 BC), Renaissance (Direr, 1525), ...
— Uses in lens design, geometric optics, ...

e e

Perspective Machine, Albrecht Durer

Fundamental Ray Tracing Steps

« (Generation of primary rays
— Rays from viewpoint along viewing directions into 3D scene
— (At least) one ray per picture element (pixel)

* Ray casting
— Traversal of spatial index structures
— Ray-primitive intersection
« Shading the hit point
— Determine pixel color
» Energy (color) travelling along primary ray
— Needed

» Local material color, object texture and reflection properties

« Local illumination at intersection point
— Compute through recursive tracing of rays
— Can be hard to determine correctly

Ray Tracing Pipeline (1)

Intersection

Shading

[Pixel Color]

Ray Tracing Pipeline (2)

Ray Generation pums
.\\ A

Ray Traversal -
v

!

Intersection —
e _/

B

Pixel Color]

)

Ray Tracing Pipeline (3)

Ray Generation pums

Ray Traversal -
e 1 _/
Intersection —
e _/

B

Pixel Color]

)

Ray Tracing Pipeline (4)

V.~ _
;@f Ray Generation

Shading

[Pixel Color]

Ray Tracing Pipeline (5)

V.~
;Qf Ray Generation

Shading

[Pixel Color]

Ray Tracing Pipeline (6)

V.~
;Qf Ray Generation

Shading

[Pixel Color]

Ray Tracing Pipeline (7)

Ray Generation

Ray Traversal

Intersection

Shading

Recursive Ray Tracing

« Searching recursively

||ght‘rs,qg{§e for paths to light
L2 sources

/ . :
| — Interaction of light &

material at intersections

— Recursively trace new rays
In reflection, refraction, and
light direction

Eye

image plane

primary ray

Reflected Refracted

viewpoint

Ray Tracing Algorithm

« Trace(ray)
— Search the next intersection point (hit, material)
— Return Shade(ray, hit, material)

« Shade(ray, hit, material)

— For each light source
 if ShadowTrace(ray to light source, distance to light)

— Calculate reflected radiance (i.e. Phong)

— Adding to the reflected radiance

— If mirroring material
» Calculate radiance in reflected direction: Trace(R(ray, hit))
« Adding mirroring part to the reflected radiance

— Same for transmission

— Return reflected radiance

« ShadowTrace(ray, dist)
— Return false, If intersection with distance < dist has been found
— Can be changed to handle transparent objects as well
* But not with refraction

Shading

* Intersection point determines primary ray’s “color”
— Diffuse object: color at intersection point
» No variation with viewing angle: diffuse (Lambertian)
— Perfect reflection/refraction (mirror, glass)
» Only one outgoing direction — Trace one secondary ray
— Non-Lambertian Reflectance
» Appearance depends on illumination and viewing direction
 Local Bi-directional Reflectance Distribution Function (BRDF)

* lllumination
— Point/directional light sources
— Area light sources
* Approximate with multiple samples / shadow rays
— Indirect illumination
« See Realistic Image Synthesis (RIS) course in next semester

« More details later

Common Approximations

 Usually RGB color model instead of full spectrum
* Finite # of point lights instead of full indirect light

« Approximate material reflectance properties
— Ambient: constant, non-directional background light
— Diffuse: light reflected uniformly in all directions
— Specular: perfect reflection, refraction

* Reflection models are often empirical

Ray Tracing Features

* Incorporates into a single framework
— Hidden surface removal
» Front to back traversal
« Early termination once first hit point is found
— Shadow computation

« Shadow rays/ shadow feelers are traced between a point on a
surface and a light sources

— Exact simulation of some light paths
» Reflection (reflected rays at a mirror surface)
» Refraction (refracted rays at a transparent surface, Snell’s law)

« Limitations
— Many reflections (exponential increase in number of rays)
— Indirect illumination requires many rays to sample all incoming
directions
— Easily gets inefficient for full global illumination computations

— Solved with Path Tracing (- later)

Ray Tracing Can...

 Produce Realistic Images
— By simulating light transport

' /) y
- R i IaTaYATA [4‘\

] 3 S o

What Is Possible?

« Models Physics of Global Light Transport

— Dependable, physically-correct visualization

VW Visualization Center

Realistic Visualization: CAD

Realistic Visualization: VR/AR

Lighting Simulation

What Is Possible?

« Huge Models
— Logarithmic scaling in scene size

12.5 Million
Triangles

~1 Billion
Triangles

Outdoor Environments

90 x 10712 (trillion) triangles

Boeing 777

Boeing 777: ~350 million individual polygons, ~30 GB on disk

Volume Visualization

« Iso-surface rendering

Ray Tracing in CG

* In the Past
— Only used as an off-line technique
— Was computationally far too demanding (minutes to hours per frame)
— Believed to not be suitable for a HW implementation

 More Recently
— Interactive ray tracing on supercomputers [Parker, U. Utah'98]
— Interactive ray tracing on PCs [Wald'01]
— Distributed Real-time ray tracing on PC clusters [Wald’01]
— RPU: First full HW implementation [Siggraph 2005]
— Commercial tools: Embree/OSPRey (Intel/CPU), OptiX (Nvidia/GPU)
— Complete film industry has switched to ray tracing (Monte-Carlo)

« Own conference
— Symposium on Interactive RT, now High-Performance Graphics (HPG)

« Ray tracing systems
— Research: PBRT (offline, physically-based, based on book, OSS),
Mitsuba renderer (EPFL), imbatracer (SB), ...

— Commercial: V-Ray (Chaos Group), Corona (Render Legion), VRED
(Autodesk), MentalRay/iRay (Ml), ...

Ray Casting Outside CG

« Tracing/Casting aray
— Type of query
* “Is there a primitive along a ray”
* “How far is the closest primitive”

 Other uses than rendering
— Volume computation
— Sound waves tracing
— Collision detection

RAY-PRIMITIVE
INTERSECTIONS

Basic Math - Ray

 Ray parameterization

—r(t)=0+ td | teR;3,d € R3: origin and direction
 Ray

— All points on the graph of r(t), witht € R,

Pinhole Camera Model

// For given image resolution {resx, resy}
// Loop over pixel raster coordinates [0, res-1]
for (prcx = 0; prcx < resx; prcx++)
for (prcy = 0; prcy < resy; prcy++)
{
// Normalized device coordinates [0, 1]
ndcx = (prcx + 0.5) / resx;
ndcy = (prcy + 0.5) / resy;
// Screen space coordinates [-1, 1]
sscx = ndex * 2 - 1;
sscy = ndcy * 2 - 1;
// Generate direction through pixel center
d f + sscx -x + sscy -y’
d d / |d|; // May normalize here
// Trace ray and assign color to pixel
color = trace ray(o, d);
write pixel (prcx, prcy, color);

u A
up-vector

f

0
origin, POV

Image plane

y spanning
vectors

A 4

focal vector

Basic Math - Sphere

« Sphere S
— ¢ € R3,r € R: center and radius
—VpeER:peSe@B-0C)- B—-0)—-1r2=0
« The distance between the points on the sphere and its center equals
the radius

P1

\
\ P2-C

P2

Ray-Sphere Intersection

« Given
— Ray: r(t) =3 +td, teR;3,d € R®
— Sphere: ¢ € R3,r € R:
s VpERpESSB-C)-P—-0)—-1r2=0
 Find closest intersection point
— Algebraic approach: substitute ray equation
c B-8)-B-0)—-r:=0withg=3+td
e t2d-d+2td-3-D)+@B-08)-B-)—-r:=0
» Solve for t

Ray-Sphere Intersection (2)

« Given
— Ray: r(t) =3 +td, teR;3,d € R3
— Sphere: ¢ € R3,r € R:
s VpERpESSB-C)-P—-0)—-1r2=0
 Find closest intersection point

— Geometric approach
« Ray and center span a plane

* Solve in 2D
+ Compute|b — 3|, |b — €|
~ 40BC = 90°

+ Intersection(s) if [b — &| < r

— Be aware of floating

point issues if o
Is far from sphere 0

Basic Math - Plane

« Plane P
— 1,a € R3: normal and point in P
—-VpeER:pePes (B—ad)-n=0
» The difference vector between any two points on the plane is either 0
or orthogonal to the plane’s normal

Ray-Plane Intersection

« Given
— Ray: r(t) =3 +td, teR;3,d € R3
— Plane: 71,d € R3: normal and point in P
« Compute intersection point
— Plane equation: p € P & (p — a) n=20
& p-n—D=0,withD=a-n
— Substitute ray parameterlzatlon. (0 + td) n—D =0
— Solve fort
* 0,1 or infinitely many solutions

—

Ray-Disc Intersection

* Intersect ray with plane
« Discard intersection if ||p—a|| >

Basic Math - Triangle

 Triangle T
— d,b,¢ € R3: vertices
— Affine combinations of d, b, ¢ — points in the plane
* Non-negative coefficients that sum up to 1 — points in the triangle

— Vﬁ € RB:ﬁ el & 311,2,36 [RO+' /11 +AZ + /13 =1 and
ﬁ:).]_(_i‘l').zb"'lgé)

C

« Barycentric coordinates

— /11,2,3

- A = Spbc/Sabc
— S: signed area of triangles

Barycentric Coordinates

« TriangleT
— d,b,¢ € R3: vertices
— A1 3: barycentric coordinates
- M+t +2A3=1
- A = Spbc/Sabc’ etc.

c (0,0,1)

Triangle Intersection: Plane-Based

« Compute intersection with triangle plane

« Compute barycentric
coordinates
— Signed areas of subtriangles

— Can be done in 2D, after
“projection” onto major plane,
depending on largest
normal vector component

« Test for positive BCs

Triangle Intersection Edge-Based (1)

« 3D linear function across triangle (3D edge functions)
— Ray: ¢ +td, teR;3,d € R3
— Triangle: 4, b, ¢ € R3

Triangle Intersection Edge-Based (2)

« 3D linear function across triangle (3D edge functions)
— Ray: ¢ +td, teR;3,d € R3
— Triangle: 4, b, ¢ € R3
~ gy = (b= 8) x (@~ 3)
— |ng| is the signed area of OAB (2 times)

-
>
QD
O

i T g,
~
~

o

Triangle Intersection Edge-Based (3)

« 3D linear function across triangle (3D edge functions)
— Ray: ¢ +td, teR;3,d € R3
— Triangle: @, b,¢ € R3
~ gy = (b= 8) x (@~ 3) c
— |ngpl is the signed area of OAB (2 times)
— 3(8) =gy - td
* Volume of OABP (6 times)
 Fort =ty

Triangle Intersection Edge-Based (4)

« 3D linear function across triangle (3D edge functions)
— Ray: ¢ +td, teR;3,d € R3
— Triangle: @, b,¢ € R3
~ gy = (b= 8) x (@~ 3) c
— |ngpl is the signed area of OAB (2 times)
- 25(0) = Tgp - td
* Volume of OABP (6 times)
 Fort =ty
— M,2() = Npcac td
— Normalize
« A=

A ()
A1(O+23(O)+235(6)
» Length of td cancels out

i =1,2,3

— e e e e e o = -
S —_—— -
VN~

~

o

Triangle Intersection Edge-Based

)

« 3D linear function across triangle (3D edge functions)
— Ray: ¢ +td, teR;3,d € R3
— Triangle: @, b,¢ € R3
~ gy = (b= 8) x (@~ 3)

— |ngpl is the signed area of OAB (2 times)
— 25(0) = Tgp - td
* Volume of OABP (6 times)
 Fort =ty
— M,2() = Npcac td
— Normalize
« A=

A ()

Lo T

f
1
I
I
I
I
I
I
I
I
1
I
I
1,/
7/

* For positive BCs
— Compute g = 4,d + A,b + A5¢

Non-degenerate real quadric surfaces Degenerate quadric surfaces

2

Yy

(5}

Cone

uadrics -

Bl 8
+
3|
|
| N
I
A

2
o

- - 2 2
Spheroid (special case of ellipsoid) ‘II_, + z_ =1 \ \WJ/
a> b % 2 2 ;
y° z7 e <<l
Circular Cone (special case of cone) - - = 0 -
f as b? x
(X,y,2)=V
2) 2
z’ Y- F o
Sphere (special case of spheroid) +5+5=1
a* a as

Ray equation

"2 2
Elliptic cylinder I— + i =1
— X =XO0 + t xd
— y j— yO + t yd Elliptic paraboloid ~z=1 Y,
—z=z0+tzd
Circular cylinder (special case of elliptic cylinder) s +=5=1
as as
Circular paraholoid(special case of elliptic paraboloid) — agi=r(]) \
))
Assignment :
y-
Hyperholic cylinder =1
2 \ A 4 /,J
Hyperbolic paraboloid - L -2z=0 ¢ r
h? \
Parabalic cylinder 2° +2ay =0
Pils¥ g
2 3 Lt
x’ Y- \
Hyperboloid of one sheet =+ - ! é
a*® o { 1

2

Hyperboloid of two sheets

2
22
P

S]
~

"
o 4

Axis Aligned Bounding Box

« Given
— Ray: ¢ +td, teR;3,d € R3
— Axis aligned bounding box (AABB): Drins Pmax € R>

pmax

pmin

Ray-Box Intersection

* Given
— Ray: ¢ +td, teR;3,d € R3
— Axis aligned bounding box (AABB): Drins Pmax € R>
« “Slabs test” for ray-box intersection
— Ray enters the box in all dimensions before exiting in any
— max({t/***|i=x,y,2z}) < min({tlf i =x,v,2))

Bounded Bounded

Volume Volume

History of Intersection Algorithms

Polygons:

Quadrics, CSG:
Recursive Ray Tracing:
Tori:

Bicubic patches:
Algebraic surfaces:
Swept surfaces:
Fractals:
Deformations:
NURBS:

Subdivision surfaces:

 Ray-geometry intersection algorithms
[Appel '68]

(Goldstein & Nagel '71]
'Whitted ’79]

Roth ’82]

'Whitted ’80, Kajiya ’82]
'Hanrahan '82]

[Kajiya '83, van Wijk '84]
Kajiya '83]

Barr '86]

[Sturzlinger 98]
[Kobbelt et al 98]

Precision Problems

« Cause of ,,surface acnhe*

\ |/
£\

Nkt
/T\

T

Due to precision problems . ‘ \
the calculated intersection

is beneath the surface 2.When a shadow ray
starts from this point,
it hits the sphere
surface,and is in
shadow

Problem in surface intersection.

