Computer Graphics

- Clipping -

Philipp Slusallek & Stefan Lemme
Clipping

• **Motivation**
 – Projected primitive might fall (partially) outside of the visible display window
 • E.g. if standing inside a building
 – Eliminate non-visible geometry early in the pipeline to process visible parts only
 – Happens after transformation from 3D to 2D
 – Must cut off parts outside the window
 • Cannot draw outside of window (e.g. plotter)
 • Outside geometry might not be representable (e.g. in fixed point)
 – Must maintain information properly
 • Drawing the clipped geometry should give the correct results: e.g. correct interpolation of colors at triangle vertices when one is clipped
 • Type of geometry might change
 – Cutting off a vertex of a triangle produces a quadrilateral
 – Might need to be split into triangle again
 • Polygons must remain closed after clipping
Line Clipping

- **Definition of clipping**
 - Cut off parts of objects which lie outside/inside of a defined region
 - Often clip against viewport (2D) or canonical view-volume (3D)

- **Let's focus first on lines only**
Brute-Force Method

- Brute-force line clipping at the viewport
 - If both end points p_b and p_e are inside viewport
 - Accept the whole line
 - Otherwise, clip the line at each edge
 - $p_{\text{intersection}} = p_b + t_{\text{line}}(p_e - p_b) = e_b + t_{\text{edge}}(e_e - e_b)$
 - Solve for t_{line} and t_{edge}
 - Intersection within segment if both $0 \leq t_{\text{line}}, t_{\text{edge}} \leq 1$
 - Replace suitable end points for the line by the intersection point
Cohen-Sutherland (1974)

- **Advantage: divide and conquer**
 - Efficient trivial accept and trivial reject
 - Non-trivial case: divide and test

- **Outcodes of points**
 - Bit encoding *(outcode, OC)*
 - Each viewport edge defines a half space
 - Set bit if vertex is outside w.r.t. that edge

- **Trivial cases**
 - Trivial accept: both are in viewport
 - \((OC(p_b) \text{ OR } OC(p_e)) = 0\)
 - Trivial reject: both lie outside w.r.t. at least one common edge
 - \((OC(p_b) \text{ AND } OC(p_e)) \neq 0\)
 - Line has to be clipped to all edges where XOR bits are set, i.e. the points lies on different sides of that edge
 - \(OC(p_b) \text{ XOR } OC(p_e)\)
Cohen-Sutherland

- **Clipping of line** $(p1, p2)$

 $oc1 = OC(p1); oc2 = OC(p2); edge = 0;$

 do {

 if (($oc1 \text{ AND } oc2) \neq 0$) // trivial reject of remaining segment
 return REJECT;
 else if (($oc1 \text{ OR } oc2) == 0$) // trivial accept of remaining segment
 return (ACCEPT, p1, p2);
 if (($oc1 \text{ XOR } oc2)[edge]$) {
 if ($oc1[edge]$) // $p1$ outside
 {$p1 = \text{cut}(p1, p2, edge); oc1 = OC(p1);$}
 else // $p2$ outside
 {$p2 = \text{cut}(p1, p2, edge); oc2 = OC(p2);$}
 }
 } while (++edge < 4);
 return ((oc1 OR oc2) == 0) ? (ACCEPT, p1, p2) : REJECT;

- **Intersection calculation for** $x = x_{\text{min}}$

 $$y - y_a = \frac{x_{\text{min}} - x_a}{x_e - x_a} (y_e - y_a)$$
 $$y = y_a + (x_{\text{min}} - x_a) \frac{y_e - y_a}{x_e - x_a}$$
Cyrus-Beck (1978)

- **Parametric line-clipping algorithm**
 - Only convex polygons: max 2 intersection points
 - Use edge orientation

- **Idea: clipping against polygons**
 - Clip line \(p = p_b + t_i (p_e - p_b) \) with each edge
 - Intersection points sorted by parameter \(t_i \)
 - Select
 - \(t_{in} \): entry point \(((p_e - p_b) \cdot N_i < 0\) with largest \(t_i \)
 - \(t_{out} \): exit point \(((p_e - p_b) \cdot N_i > 0\) with smallest \(t_i \)
 - If \(t_{out} < t_{in} \), line lies completely outside (akin to ray-box intersect.)

- **Intersection calculation**

 \[
 (p - p_{edge}) \cdot N_i = 0
 \]

 \[
 t_i (p_e - p_b) \cdot N_i + (p_b - p_{edge}) \cdot N_i = 0
 \]

 \[
 t_i = \frac{(p_{edge} - p_b) \cdot N_i}{(p_e - p_b) \cdot N_i}
 \]
Liang-Barsky (1984)

- **Cyrus-Beck for axis-aligned rectangles**
 - Using window-edge coordinates (with respect to an edge T)
 \[WEC_T(p) = (p - p_T) \cdot N_T \]
- **Example: top** \((y = y_{\text{max}})\)

\[
N_T = \begin{pmatrix} 0 \\ 1 \end{pmatrix},
p_b - p_T = (x_b - x_{\text{max}})
\]

\[
t_T = \frac{(p_b - p_T) \cdot N_T}{(p_b - p_e) \cdot N_T} = \frac{WEC_T(p_b)}{WEC_T(p_b) - WEC_T(p_e)} = \frac{y_b - y_{\text{max}}}{y_b - y_e}
\]

- **Window-edge coordinate (WEC): decision function for an edge**
 - Directed distance to edge
 - Only sign matters, similar to Cohen-Sutherland outcodes
 - Sign of the dot product determines whether the point is in or out
 - Normalization unimportant
Line Clipping - Summary

- **Cohen-Sutherland, Cyrus-Beck, and Liang-Barsky algorithms readily extend to 3D**

- **Cohen-Sutherland algorithm**
 - Efficient when majority of lines can be trivially accepted / rejected
 - Very large clip rectangles: almost all lines inside
 - Very small clip rectangles: almost all lines outside
 - Repeated clipping for remaining lines
 - Testing for 2D/3D point coordinates

- **Cyrus-Beck (Liang-Barsky) algorithms**
 - Efficient when many lines must be clipped
 - Testing for 1D parameter values
 - Testing intersections always for all clipping edges (in the Liang-Barsky trivial rejection testing possible)
Polygon Clipping

- **Extended version of line clipping**
 - Condition: polygons have to remain closed
 - Filling, hatching, shading, ...
Sutherland-Hodgeman (1974)

- Idea
 - Iterative clipping against each edge in sequence
 - Local operations on p_{i-1} and p_i

\begin{align*}
\text{inside} & \quad \text{outside} \\
\text{output: } p_i & \quad \text{output: } p
\end{align*}

1st output: p
2nd output: p_i
Enhancements

• **Recursive polygon clipping**
 – Pipelined Sutherland-Hodgeman

\[p_0, p_1, \ldots \rightarrow \text{Top} \rightarrow \text{Bottom} \rightarrow \text{Left} \rightarrow \text{Right} \rightarrow p_0, p_1, \ldots \]

• **Problems**
 – Degenerated polygons/edges
 • Elimination by post-processing, if necessary
Other Clipping Algorithms

- **Weiler & Atherton (´77)**
 - Arbitrary concave polygons with holes against each other

- **Vatti (´92)**
 - Also with self-overlap

- **Greiner & Hormann (TOG ´98)**
 - Simpler and faster as Vatti
 - Also supports Boolean operations
 - Idea:
 - Odd winding number rule
 - Intersection with the polygon leads to a winding number \(\pm 1 \)
 - Walk along both polygons
 - Alternate winding number value
 - Mark point of entry and point of exit
 - Combine results
Greiner & Hormann

A in B
B in A
(A in B) ∪ (B in A)
3D Clipping agst. View Volume

• **Requirements**
 – Avoid unnecessary rasterization
 – Avoid overflow on transformation at fixed point!

• **Clipping against viewing frustum**
 – Enhanced Cohen-Sutherland with 6-bit outcode
 – After perspective division
 • \(-1 < y < 1\)
 • \(-1 < x < 1\)
 • \(-1 < z < 0\)
 – Clip against side planes of the canonical viewing frustum
 – Works analogously with Liang-Barsky or Sutherland-Hodgeman
3D Clipping agst. View Volume

• **Clipping in homogeneous coordinates**
 - Use canonical view frustum, but avoid costly division by \(W \)
 - Inside test with a linear distance function (WEC)
 - Left: \(X / W > -1 \) \(\implies \) \(W + X = WEC_L(p) > 0 \)
 - Top: \(Y / W < 1 \) \(\implies \) \(W - Y = WEC_T(p) > 0 \)
 - Back: \(Z / W > -1 \) \(\implies \) \(W + Z = WEC_B(p) > 0 \)
 - ...
 - Intersection point calculation (before homogenizing)
 - Test: \(WEC_L(p_b) > 0 \) and \(WEC_L(p_e) < 0 \)
 - Calculation:
 \[
 \begin{align*}
 WEC_L(p_b + t(p_e - p_b)) &= 0 \\
 W_b + t(W_e - W_b) + X_b + t(X_e - X_b) &= 0 \\
 t &= \frac{W_b + X_b}{(W_b + X_b) - (W_e + X_e)} = \frac{WEC_L(p_b)}{WEC_L(p_b) - WEC_L(p_e)}
 \end{align*}
 \]
• **Negative w**
 – Points with $w < 0$ or lines with $w_b < 0$ and $w_e < 0$
 • Negate and continue
 – Lines with $w_b \cdot w_e < 0$ (NURBS)
 • Line moves through infinity
 – External line
 • Clipping two times
 – Original line
 – Negated line
 • Generates up to two segments
Practical Implementations

• Combining clipping and scissoring
 – Clipping is expensive and should be avoided
 • Intersection calculation
 • Variable number of new points, new triangles
 – Enlargement of clipping region
 • Larger than viewport, but
 • Still avoiding overflow due to fixed-point representation
 – Result
 • Less clipping
 • Applications should avoid drawing objects that are outside of the viewport/viewing frustum
 • Objects that are partially outside will be implicitly clipped during rasterization
 • Slight penalty because they will still be processed (triangle setup)