Computer Graphics

- Texturing -

Philipp Slusallek
Texture

- **Textures modify the input for shading computations**
 - Either via (painted) images textures or procedural functions

- **Example texture maps for**
 - Reflectance, normals, shadow reflections, …
Definition: Textures

- **Texture maps texture coordinates to shading values**
 - Input: 1D/2D/3D/4D texture coordinates
 - Explicitly given or derived via other data (e.g. position, direction, …)
 - Output: Scalar or vector value

- **Modified values in shading computations**
 - Reflectance
 - Changes the diffuse or specular reflection coefficient \((k_d, k_s)\)
 - Geometry and Normal (important for lighting)
 - Displacement mapping \(P' = P + \Delta P\)
 - Normal mapping \(N' = N + \Delta N\)
 - Bump mapping \(N' = N(P + tN)\)
 - Opacity
 - Modulating transparency (e.g. for fences in games)
 - Illumination
 - Light maps, environment mapping, reflection mapping
 - And anything else …
IMAGE TEXTURES
Wrap Mode

- **Texture Coordinates**
 - \((u, v)\) in \([0, 1] \times [0, 1]\)

- **What if?**
 - \((u, v)\) not in unit square?
Wrap Mode

- **Repeat**

- **Fractional Coordinates**
 - \(t_u = u - \lfloor u \rfloor \)
 - \(t_v = v - \lfloor v \rfloor \)
Wrap Mode

- **Mirror**

- **Fractional Coordinates**
 - \(t_u = u - [u] \)
 - \(t_v = v - [v] \)

- **Lattice Coordinates**
 - \(l_u = [u] \)
 - \(l_v = [v] \)

- **Mirror if Odd**
 - if \((l_u \% 2 == 1) \)
 \(t_u = 1 - t_u \)
 - if \((l_v \% 2 == 1) \)
 \(t_v = 1 - t_v \)
Wrap Mode

- **Clamp**

- **Clamp \(u \) to \([0, 1]\)**

 \[
 \begin{align*}
 \text{if} & \quad (u < 0) \quad t_u = 0; \\
 \text{else if} & \quad (u > 1) \quad t_u = 1; \\
 \text{else} & \quad t_u = u;
 \end{align*}
 \]

- **Clamp \(v \) to \([0, 1]\)**

 \[
 \begin{align*}
 \text{if} & \quad (v < 0) \quad t_v = 0; \\
 \text{else if} & \quad (v > 1) \quad t_v = 1; \\
 \text{else} & \quad t_v = v;
 \end{align*}
 \]
Wrap Mode

• **Border**

• **Check Bounds**

```plaintext
e if (u < 0 || u > 1
    || v < 0 || v > 1)
    return backgroundColor;
else
    tu = u;
    tv = v;
```

```plaintext
0, 0 0, 4 4, 0 4, 4
```
Wrap Mode

• **Comparison**
 - With OpenGL texture modes
Reconstruction Filter

- **Image texture**
 - Discrete set of sample values (given at texel centers!)

- **In general**
 - Hit point does not exactly hit a texture sample

- **Still want to reconstruct a continuous function**
 - Use reconstruction filter to find color for hit point
Nearest Neighbor

- **Local Coordinates**
 - Assuming cell-centered samples
 - \(u = tu \times \text{resU} \);
 - \(v = tv \times \text{resV} \);

- **Lattice Coordinates**
 - \(lu = \min(\lfloor u \rfloor, \text{resU} - 1) \);
 - \(lv = \min(\lfloor v \rfloor, \text{resV} - 1) \);

- **Texture Value**
 - return image[lu, lv];
Bilinear Interpolation

- **Local Coordinates**
 - Assuming node-centered samples
 - \(u = tu \times (resU - 1); \)
 - \(v = tv \times (resV - 1); \)

- **Fractional Coordinates**
 - \(fu = u - \lfloor u \rfloor; \)
 - \(fv = v - \lfloor v \rfloor; \)

- **Texture Value**
 - \(\text{return } (1-fu) \times (1-fv) \times \text{image}[\lfloor u \rfloor, \lfloor v \rfloor] \)
 - \(+ (1-fu) \times (fv) \times \text{image}[\lfloor u \rfloor, \lfloor v \rfloor+1] \)
 - \(+ (fu) \times (1-fv) \times \text{image}[\lfloor u \rfloor+1, \lfloor v \rfloor] \)
 - \(+ (fu) \times (fv) \times \text{image}[\lfloor u \rfloor+1, \lfloor v \rfloor+1] \)
Bilinear Interpolation

- **Successive Linear Interpolations**
 - \(u_0 = (1-fv) \text{image}[\lceil u \rceil, \lceil v \rceil] \)
 \[+ (fv) \text{image}[\lceil u \rceil, \lceil v \rceil+1]; \]
 - \(u_1 = (1-fv) \text{image}[\lceil u \rceil+1, \lceil v \rceil] \)
 \[+ (fv) \text{image}[\lceil u \rceil+1, \lceil v \rceil+1]; \]
 - return \((1-fu) u_0\)
 \[+ (fu) u_1; \]
Nearest vs. Bilinear Interpolation

GL_NEAREST

GL_LINEAR
Bicubic Interpolation

- **Properties**
 - Assuming node-centered samples
 - Essentially based on cubic splines (see later)

- **Pros**
 - Even smoother

- **Cons**
 - More complex & expensive (4x4 kernel)
 - Overshoot
Discussion: Image Textures

• **Pros**
 – Simple generation
 • Painted, simulation, ...
 – Simple acquisition
 • Photos, videos

• **Cons**
 – Illumination “frozen” during acquisition
 – Limited resolution
 – Susceptible to aliasing
 – High memory requirements (often HUGE for films, 100s of GB)
 – Issues when mapping 2D image onto 3D object
PROCEDURAL TEXTURES
Discussion: Procedural Textures

• **Cons**
 – Sometimes hard to achieve specific effect
 – Possibly non-trivial programming

• **Pros**
 – Flexibility & parametric control
 – Unlimited resolution
 – Anti-aliasing possible
 – Low memory requirements
 – May be directly defined as 3D “image” mapped to 3D geometry
 – Low-cost visual complexity
2D Checkerboard Function

- **Lattice Coordinates**
 - \(lu = \lfloor u \rfloor \)
 - \(lv = \lfloor v \rfloor \)

- **Compute Parity**
 - \(\text{parity} = (lu + lv) \mod 2; \)

- **Return Color**
 - if (parity == 1)
 - return color1;
 - else
 - return color0;
3D Checkerboard - Solid Texture

- **Lattice Coordinates**
 - \[lu = \lfloor u \rfloor \]
 - \[lv = \lfloor v \rfloor \]
 - \[lw = \lfloor w \rfloor \]

- **Compute Parity**
 - \[\text{parity} = (lu + lv + lw) \mod 2 \]

- **Return Color**
 - if (parity == 1)
 - return color1;
 - else
 - return color0;
Tile

- **Fractional Coordinates**
 - \(fu = u - \lfloor u \rfloor \)
 - \(fv = v - \lfloor v \rfloor \)

- **Compute Booleans**
 - \(bu = fu < \text{mortarWidth} \)
 - \(bv = fv < \text{mortarWidth} \)

- **Return Color**
 - if \((bu || bv)\)
 - return \text{mortarColor}\
 - else
 - return \text{tileColor}
Brick

• **Shift Column for Odd Rows**
 - \(\text{parity} = \lfloor v \rfloor \% 2; \)
 - \(u = \text{parity} \times 0.5; \)

• **Fractional Coordinates**
 - \(f_u = u - \lfloor u \rfloor \)
 - \(f_v = v - \lfloor v \rfloor \)

• **Compute Booleans**
 - \(b_u = f_u < \text{mortarWidth}; \)
 - \(b_v = f_v < \text{mortarWidth}; \)

• **Return Color**
 - if \((b_u \mid\mid b_v)\)
 - return \text{mortarColor};
 - else
 - return \text{brickColor};
More Variation

(a) Simple bond
(b) Scottish bond
(c) Flemish bond
(d) Sussex bond
(e) Monk bond
Other Patterns

• Circular Tiles

• Octagonal Tiles

• Use your imagination!
Perlin Noise

- **Natural Patterns**
 - Similarity between patches at different locations
 - Repetitiveness, coherence (e.g. skin of a tiger or zebra)
 - Similarity on different resolution scales
 - Self-similarity
 - But never completely identical
 - Additional disturbances, turbulence, noise

- **Mimic Statistical Properties**
 - Purely empirical approach
 - Looks convincing, but has nothing to do with material’s physics

- **Perlin Noise is essential for adding “natural” details**
 - Used in many texture functions
Perlin Noise

• Natural Fractals
Noise Function

• **Noise**(x, y, z)
 - Statistical invariance under rotation
 - Statistical invariance under translation
 - Roughly fixed frequency of ~1 Hz

• **Integer Lattice** (i, j, k)
 - **Value noise**
 • Random value at lattice points
 - **Gradient noise** (most common)
 • Random gradient vector at lattice point
 - **Interpolation**
 • Bi-/tri-linear or cubic (Hermite spline, \(\rightarrow\) later)
 - **Hash function to map vertices to values**
 • Essentially randomized look up
 • Virtually infinite extent and variation with finite array of values
Noise vs. Noise

• **Value Noise vs. Gradient Noise**
 – Gradient noise has lower regularity artifacts
 – More high frequencies in noise spectrum

• **Random Values vs. Perlin Noise**
 – Stochastic vs. deterministic

Random values at each pixel

Gradient noise
Turbulence Function

- **Noise Function**
 - Single spike in frequency spectrum (single frequency, see later)

- **Natural Textures**
 - Mix of different frequencies
 - Decreasing amplitude for high frequencies

- **Turbulence from Noise**
 - $Turbulence(x) = \sum_{i=0}^{k} |a_i \cdot noise(f_i \cdot x)|$
 - Frequency: $f_i = 2^i$
 - Amplitude: $a_i = 1 / p^i$
 - Persistence: p typically $p=2$
 - Power spectrum: $a_i = 1 / f_i$
 - Brownian motion: $a_i = 1 / f_i^2$
 - Summation truncation
 - 1st term: noise(x)
 - 2nd term: noise(2x)/2
 - ...
 - Until period $(1/f_k) < 2$ pixel-size (band limit, see later)
Synthesis of Turbulence (1-D)
Synthesis of Turbulence (2-D)
Example: Marble

- **Overall Structure**
 - Smoothly alternating layers of different marble colors
 - $f_{\text{marble}}(x,y,z) := \text{marble_color}(\sin(x))$
 - `marble_color` : transfer function (see lower left)

- **Realistic Appearance**
 - Simulated turbulence
 - $f_{\text{marble}}(x,y,z) := \text{marble_color}(\sin(x + \text{turbulence}(x, y, z)))$
Solid Noise

• **3D Noise Texture**
 – Wood
 – Erosion
 – Marble
 – Granite
 – …
Others Applications

• **Bark**
 – Turbulated saw-tooth function

• **Clouds**
 – White blobs
 – Turbulated transparency along edge

• **Animation**
 – Vary procedural texture function’s parameters over time
TEXTURE MAPPING
2D Texture Mapping

- **Forward mapping**
 - Object surface parameterization
 - Projective transformation

- **Inverse mapping**
 - Find corresponding pre-image/footprint of each pixel in texture
 - Integrate over pre-image
Surface Parameterization

• To apply textures we need 2D coordinates on surfaces
 → Parameterization

• Some objects have a natural parameterization
 – Sphere: spherical coordinates \((\phi, \theta) = (2\pi u, \pi v)\)
 – Cylinder: cylindrical coordinates \((\phi, h) = (2\pi u, H v)\)
 – Parametric surfaces (such as B-spline or Bezier surfaces → later)

• Parameterization is less obvious for
 – Polygons, implicit surfaces, teapots, …
Triangle Parameterization

- Triangle is a planar object
 - Has implicit parameterization (e.g. barycentric coordinates)
 - But we need more control: Placement of triangle in texture space
- Assign texture coordinates \((u,v)\) to each vertex \((x_o, y_o, z_o)\)
- Apply viewing projection \((x_o, y_o, z_o) \rightarrow (x, y)\) (details later)
- Yields full texture transformation (warping) \((u,v) \rightarrow (x,y)\)

\[
x = \frac{au + bv + c}{gu + hv + i} \quad y = \frac{du + ev + f}{gu + hv + i}
\]

- In homogeneous coordinates (by embedding \((u,v)\) as \((u,v,1)\))

\[
\begin{bmatrix}
x' \\
y' \\
w
\end{bmatrix} =
\begin{bmatrix}
a & b & c \\
d & e & f \\
g & h & i
\end{bmatrix}
\begin{bmatrix}
u' \\
v' \\
q
\end{bmatrix}; (x, y) = \left(\frac{x'}{w}, \frac{y'}{w}\right), (u, v) = \left(\frac{u'}{q}, \frac{v'}{q}\right)
\]

- Transformation coefficients determined by 3 pairs \((u,v) \rightarrow (x,y)\)
 - Three linear equations
 - Invertible iff neither set of points is collinear
Triangle Parameterization (2)

- **Given**
 \[
 \begin{bmatrix}
 x' \\
 y' \\
 w
 \end{bmatrix} =
 \begin{bmatrix}
 a & b & c \\
 d & e & f \\
 g & h & i
 \end{bmatrix}
 \begin{bmatrix}
 u' \\
 v' \\
 q
 \end{bmatrix}
 \]

- **The inverse transform** \((x,y) \rightarrow (u,v)\) is
 \[
 \begin{bmatrix}
 u' \\
 v' \\
 q
 \end{bmatrix} =
 \begin{bmatrix}
 ei - fh & ch - bi & bf - ce \\
 fg - di & ai - cg & cd - af \\
 dh - eg & bg - ah & ae - bd
 \end{bmatrix}
 \begin{bmatrix}
 x' \\
 y' \\
 w
 \end{bmatrix}
 \]

- **Coefficients must be calculated for each triangle**
 - **Rasterization**
 - Incremental bilinear update of \((u',v',q)\) in screen space
 - Using the partial derivatives of the linear function (i.e. constants)
 - **Ray tracing**
 - Evaluated at every intersection (via barycentric coordinates)

- **Often (partial) derivatives are needed as well**
 - Explicitly given in matrix (colored for \(\partial u/\partial x\), \(\partial v/\partial x\), \(\partial q/\partial x\))
Textures Coordinates

- **Solid Textures**
 - 3D world/object \((x,y,z)\) coords → 3D \((u,v,w)\) texture coordinates
 - Similar to carving object out of material block

- **2D Textures**
 - 3D Cartesian \((x,y,z)\) coordinates → 2D \((u,v)\) texture coordinates?
Parametric Surfaces

- **Definition (more detail later)**
 - Surface defined by parametric function
 - \((x, y, z) = p(u, v)\)
 - Input
 - Parametric coordinates: \((u, v)\)
 - Output
 - Cartesian coordinates: \((x, y, z)\)

- **Texture Coordinates**
 - Directly derived from surface parameterization
 - Invert parametric function
 - From world coordinates to parametric coordinates
 - Usually computed implicitly anyway (e.g. in ray tracing)
Parametric Surfaces

- **Polar Coordinates**
 - \((x, y, 0) = \text{Polar2Cartesian}(r, \phi)\)

- **Disc**
 - \(p(u, v) = \text{Polar2Cartesian}(R v, 2\pi u) \ // \text{disc radius } R\)
Parametric Surfaces

- **Cylindrical Coordinates**
 - \((x, y, z) = \text{Cylindrical2Cartesian}(r, \phi, z)\)

- **Cylinder**
 - \(p(u, v) = \text{Cylindrical2Cartesian}(r, 2\pi u, H v)\) // cylinder height \(H\)
Parametric Surfaces

- **Spherical Coordinates**
 - \((x, y, z) = \text{Spherical2Cartesian}(r, \theta, \phi)\)

- **Sphere**
 - \(p(u, v) = \text{Spherical2Cartesian}(r, \pi v, 2\pi u)\)
Parametric Surfaces

- **Triangle**
 - Use barycentric coordinates directly
 - $p(u, v) = (1 - u - v)p_0 + up_1 + vp_2$
Parametric Surfaces

- **Triangle Mesh**
 - Associate a predefined texture coordinate to each triangle vertex
 - Interpolate texture coordinates using barycentric coordinates
 - $u = \lambda_0 p_{0u} + \lambda_1 p_{1u} + \lambda_2 p_{2u}$
 - $v = \lambda_0 p_{0v} + \lambda_1 p_{1v} + \lambda_2 p_{2v}$
 - Texture mapped onto manifold
 - Single texture shared by many triangles
Surface Parameterization

- **Other Surfaces**
 - No intrinsic parameterization??
Intermediate Mapping

- **Coordinate System Transform**
 - Express Cartesian coordinates into a given coordinate system

- **3D to 2D Projection**
 - Drop one coordinate
 - Compute u and v from remaining 2 coordinates
Intermediate Mapping

Planar Mapping
- Map to different Cartesian coordinate system
- \((x', y', z') = \text{AffineTransformation}(x, y, z)\)
 - Orthogonal basis: translation + row-vector rotation matrix
 - Non-orthogonal basis: translation + inverse column-vector matrix
- Drop \(z'\), map \(u = x'\), map \(v = y'\)
- E.g.: Issues when surface normal orthogonal to projection axis
Cylindrical Mapping

- Map to cylindrical coordinates (possibly after translation/rotation)
- \((r, \varphi, z) = \text{Cartesian2Cylindrical}(x, y, z)\)
- Drop \(r\), map \(u = \varphi / 2\pi\), map \(v = z / H\)
- Extension: add scaling factors: \(u = \alpha \varphi / 2\pi\)
- E.g.: Similar topology gives reasonable mapping
Intermediate Mapping

- **Spherical Mapping**
 - Map to spherical coordinates (possibly after translation/rotation)
 - \((r, \theta, \phi) = \text{Cartesian2Spherical}(x, y, z)\)
 - Drop \(r\), map \(u = \phi / 2 \pi\), map \(v = \theta / \pi\)
 - Extension: add scaling factors to both \(u\) and \(v\)
 - E.g.: Issues in concave regions
Two-Stage Mapping: Problems

- Problems
 - May introduce undesired texture distortions if the intermediate surface differs too much from the destination surface
 - Still often used in practice because of its simplicity

![Diagram](image)

Surface concavities can cause the texture pattern to reverse if the object normal mapping is used.
Projective Textures

- Project texture onto object surfaces
 - Slide projector
- Parallel or perspective projection
- Use photographs (or drawings) as textures
 - Used a lot in film industry!
- Multiple images
 - View-dependent texturing (advanced topic)
- Perspective Mapping
 - Re-project photo on its 3D environment
Projective Texturing: Examples
Slope-Based Mapping

• **Definition**
 – Depends on surface normal and predefined vector

• **Example**
 – $\alpha = n \cdot \omega$
 – return $\alpha \text{flatColor} + (1 - \alpha) \text{slopeColor}$;
Environment Map

- **Spherical Map**
 - Photo of a reflective sphere (gazing ball)
 - Photos with a fish-eye camera
 - Only gives hemi-sphere mapping
Environment Map

• **Latitude-Longitude Map**
 – Remapping 2 images of reflective sphere
 – Photo with an environment camera

• **Algorithm**
 – If no intersection found, use ray direction to find background color
 – Cartesian coords of ray dir. → spherical coords → uv tex coords
Environment Map

- **Cube Map**
 - Remapping 2 images of reflective sphere
 - Photos with a perspective camera

- **Algorithm**
 - Find main axis (-x, +x, -y, +y, -z, +z) of ray direction
 - Use other 2 coordinates to access corresponding face texture
 - Akin to a 90° projective light
Reflection Map Rendering

- Spherical parameterization
- O-mapping using reflected view ray intersection
Reflection Map Parameterization

• **Spherical mapping**
 – Single image
 – Bad utilization of the image area
 – Bad scanning on the edge
 – Artifacts, if map and image do not have the same viewpoint

• **Double parabolic mapping**
 – Yields spherical parameterization
 – Subdivide in 2 images (front-facing and back-facing sides)
 – Less bias near the periphery
 – Arbitrarily reusable
 – Supported by OpenGL extensions
Reflection Mapping Example

Terminator II motion picture
Reflection Mapping Example II

• **Reflection mapping with Phong reflection**
 – Two maps: diffuse & specular
 – Diffuse: index by surface normal
 – Specular: indexed by reflected view vector
Light Maps

- **Light maps (e.g. in Quake)**
 - Pre-calculated illumination (local irradiance)
 - Often very low resolution: smoothly varying
 - Multiplication of irradiance with base texture
 - Diffuse reflectance only
 - Provides surface radiosity
 - View-independent out-going radiance
 - Animated light maps
 - Animated shadows, moving light spots, etc…

\[
B(x) = \rho(x) E(x) = \pi L_o(x)
\]

Representing radiosity in a mesh or texture
Bump Mapping

• **Modulation of the normal vector**
 – Surface normals changed only
 • Influences shading only
 • No self-shadowing, contour is not altered
Bump Mapping

- **Original surface:** $O(u,v)$
 - Surface normals are known
- **Bump map:** $B(u,v) \in R$
 - Surface is offset in normal direction according to bump map intensity
 - New normal directions $N'(u,v)$ are calculated based on virtually displaced surface $O'(u,v)$
 - Original surface is rendered with new normals $N'(u,v)$

Grey-valued texture used for bump height
Bump Mapping

\[O'(u, v) = O(u, v) + B(u, v) \frac{N}{|N|} \]

- Normal is cross-product of derivatives:

\[O'_u = O_u + B_u \frac{N}{|N|} + B \left(\frac{N}{|N|} \right)_u \]

\[O'_v = O_v + B_v \frac{N}{|N|} + B \left(\frac{N}{|N|} \right)_v \]

- If \(B \) is small (i.e. the bump map displacement function is small compared to its spatial extent) the last term in each equation can be ignored

\[N'(u, v) \]

\[= O_u \times O_v + B_u \left(\frac{N}{|N|} \times O_v \right) \]

\[+ B_v \left(O_u \times \frac{N}{|N|} \right) + B_u B_v \left(\frac{N \times N}{|N|^2} \right) \]

- The first term is the normal to the surface and the last is zero, giving:

\[D = B_u (N \times O_v) - B_v (N \times O_u) \]

\[N' = N + D \]
Texture Examples

• Complex optical effects
 – Combination of multiple texture effects

RenderMan Companion
Billboards

- **Single textured polygons**
 - Often with opacity texture
 - Rotates, always facing viewer
 - Used for rendering distant objects
 - Best results if approximately radially or spherically symmetric

- **Multiple textured polygons**
 - Azimuthal orientation: different view-points
 - Complex distribution: trunk, branches, …