
A Data Layout Transformation for Vectorizing Compilers
Arsène Pérard-Gayot

Computer Graphics Lab

Saarland University

Saarbrücken, Germany

perard@cg.uni-saarland.de

Richard Membarth

DFKI

Saarland University

Saarbrücken, Germany

richard.membarth@dfki.de

Philipp Slusallek

DFKI

Saarland University

Saarbrücken, Germany

slusallek@dfki.de

Simon Moll

Compiler Design Lab

Saarland University

Saarbrücken, Germany

moll@cs.uni-saarland.de

Roland Leißa

Compiler Design Lab

Saarland University

Saarbrücken, Germany

leissa@cs.uni-saarland.de

Sebastian Hack

Compiler Design Lab

Saarland University

Saarbrücken, Germany

hack@cs.uni-saarland.de

ABSTRACT
Modern processors are often equipped with vector instruction sets.

Such instructions operate on multiple elements of data at once,

and greatly improve performance for specific applications. A pro-

grammer has two options to take advantage of these instructions:

writing manually vectorized code, or using an auto-vectorizing

compiler. In the latter case, he only has to place annotations to in-

struct the auto-vectorizing compiler to vectorize a particular piece

of code. Thanks to auto-vectorization, the source program remains

portable, and the programmer can focus on the task at hand instead

of the low-level details of intrinsics programming. However, the

performance of the vectorized program strongly depends on the

precision of the analyses performed by the vectorizing compiler. In

this paper, we improve the precision of these analyses by selectively

splitting stack-allocated variables of a structure or aggregate type.

Without this optimization, automatic vectorization slows the execu-

tion down compared to the scalar, non-vectorized code. When this

optimization is enabled, we show that the vectorized code can be

as fast as hand-optimized, manually vectorized implementations.

CCS CONCEPTS
•Computingmethodologies→Vector / streaming algorithms;
• Software and its engineering→ Compilers; Software perfor-
mance;

KEYWORDS
Vectorization, Compiler, Optimization

ACM Reference Format:
Arsène Pérard-Gayot, Richard Membarth, Philipp Slusallek, Simon Moll,

Roland Leißa, and Sebastian Hack. 2018. A Data Layout Transformation for

Vectorizing Compilers. InWPMVP’18 : Workshop on Programming Models

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

WPMVP’18 , February 24–28, 2018, Vienna, Austria
© 2018 Copyright held by the owner/author(s). Publication rights licensed to the

Association for Computing Machinery.

ACM ISBN 978-1-4503-5646-6/18/02. . . $15.00

https://doi.org/10.1145/3178433.3178440

for SIMD/Vector Processing, February 24–28, 2018, Vienna, Austria. ACM, New

York, NY, USA, 8 pages. https://doi.org/10.1145/3178433.3178440

1 INTRODUCTION
Vectorization is the process of transforming a program that operates

on single elements of data into a program that operates on arrays of

data. This transformation requires to convert the control flow of the

input program to data flow, by inserting masking instructions and

guards. As a result, the program can be executed on a machine that

provides vector instructions, and execute faster. In order to perform

this transformation, developers can either use compiler intrinsics

and directly write vector code, or use a semi-automatic vectorizing

compiler and write annotations in the parts of the program that

should be vectorized. The advantages of the second approach are

clear: The programmer can write cleaner, more portable code with

less effort.

struct Pair {

a: int ,

b: int

};

for i in vectorize(/* ... */) {

let mut pair = Pair {

a: 0,

b: i

};

while pair.a < 10 {

pair.a++

}

}

(a) Code before transformation

for i in vectorize(/* ... */) {

let mut pair_a = 0;

let pair_b = i;

while pair_a < 10 {

pair_a ++

}

}

(b) Equivalent code after tranfor-
mation

Figure 1: Result of the vectorization analysis before and af-
ter our transformation. Uniform and varying expressions
are colored in green and orange respectively.

Using state-of-the-art guided vectorization, the programmer only

places a minimal amount of annotations, and the compiler analyzes

the program to determine the shape of every variable or statement.

For the sake of simplicity, such shapes can either be: varying, in
which case the variable or statement will be vectorized; or uniform,

in which case it will remain scalar. However, these analyses do not

detect when only part of a structure or aggregate type is varying

https://doi.org/10.1145/3178433.3178440
https://doi.org/10.1145/3178433.3178440

WPMVP’18 , February 24–28, 2018, Vienna, Austria A. Pérard-Gayot et al.

and the rest is uniform, and therefore will mark all their members

as varying (see Figure 1a).

To solve this issue, we introduce a transformation that is exe-

cuted in fixed point with the vectorization analysis. This transfor-

mation operates on the input scalar program and breaks aggregates

or structures that are assigned a varying shape into smaller parts.

The result (see Figure 1b) is a program in which the varying mem-

bers of the aggregates are separated from the uniform ones. This

transformation may impact the way control flow is vectorized. For

instance, if the shape of a loop condition was changed from varying

to uniform, masking is no longer necessary, because all lanes enter

and exit the loop together. This, in turn, results in a spectacular

performance improvement, as shown in Section 4.

2 RELATEDWORK
We first review standard vectorization techniques, and then present

region vectorization. Finally, we describe support for vectorization

in programming languages.

2.1 Traditional Approaches
2.1.1 Superword Level Parallelism (SLP). Vectorization on straight-

line code exploits SLP: The compiler tries to merge several scalar

operations into a vector operation. This can be done on a per-

basic-block level [13] or in the presence of control flow [23]. SLP

algorithms will usually give up if the exact number of needed in-

structions cannot be fed into the SIMD lanes. Padded SLP tries to

overcome this limitation by injecting redundant instructions [22].

Throttled SLP uses a cost model in order to estimate whether SLP

vectorization is actually worthwhile at all [21].

2.1.2 Loop Vectorization. Allen et al. [1, 2] present a technique

to translate loop nests to array statements. An alternative is outer
loop vectorization using a so-called unroll-and-jam technique [3, 16,

20]: A chosen outer loop is unrolled several timeswhile the resulting

loop bodies are re-fused (“jammed”). There is a good chance that

the instructions stemming from the same instruction in the original

version can be grouped into SIMD instructions.

Other work on loop vectorization also considers data alignment,

reductions [19], and interleaved data accesses [18]. Furthermore,

the polyhedral model [7]—a powerful mathematical loop analysis

framework using Presburger sets—has also been instrumented for

loop vectorization [17, 25].

2.2 The Region Vectorizer
The region vectorizer (RV)1 is a state-of-the-art vectorization frame-

work based on LLVM. RV is derived from the whole-function vector-
izer (WFV) [10–12]. RV vectorizes regions, which are single-entry,

multi-exit subgraphs of the Control-Flow Graph (CFG). If the region

encapsulates a loop nest, RV performs outer-loop vectorization. If

the region contains the whole CFG, RV will vectorize the whole

function.

RV maps each SIMD lane to one instance of a region in a CFG.

The region instances execute in SPMD-like fashion, meaning that

RV assumes that there are no data races between SIMD lanes.

1
see https://github.com/cdl-saarland/rv.

2.2.1 Analysis and Transformations. RV operates in three main

phases. First, it performs a divergence analysis [5, 12, 14] that assigns
each instruction and branch a vector shape. This vector shape deter-
mines which instructions and branches in the region will behave

uniformly across the instances of the region.

RV uses a sophisticated lattice to keep track of each instruction’s

vector shape [8]. However, for the purpose of the paper it is suffi-

cient to just differentiate between the vector shapes uniform and

varying (see Section 1). Optimistically, RV assigns each instruction

uniform (the bottom element in the lattice), and ascends in the

lattice as required in a fixed-point iteration.

Second, because SIMD CPUs can not handle divergent branches

in hardware—unlike GPUs, RV linearizes divergent control by if-

conversion: RV emulates the original control flow by inserting bit

operations and masking instructions. This linearization and the

additional masking operations take their toll on the program’s

performance. Thus, it is a good idea to keep control flow uniform
whenever possible.

Finally, the vector code generator emits vector instructions,

thereby concluding the vectorization process.

2.2.2 Vectorization of stack objects. Due to the SPMD semantics,

if the code makes use of stack-allocated objects (alloca in LLVM)

RV assumes that each SIMD lane sees its own copy of the object.

RV vectorizes stack objects in the general case by replicating the

structure in an array (array-of-struct) such that each SIMD lane

receives its own instance. Vector accesses to these arrays are inef-

ficient since if all SIMD threads access an element of their stack

object in lock step, the accessed pointers will have a large stride.

However, RV employs several optimizations to generate efficient

data layouts for vectorized stack-allocated objects.

First, if all SIMD lanes access the same offsets and write only

uniform values, the stack object remains scalar. Second, if all SIMD

lanes access the same offsets of the stack object but write varying
values, RV changes the layout of the object to struct-of-array instead

of array-of-struct [24, 26]. For example, a scalar stack object with the

type struct {int , int } will be replicated as struct {[int ×N], [int ×
N]} where N refers to the vectorization factor.

2.3 Support in Programming Languages
Programming languages usually incorporate some mechanism to

allows programmers to vectorize code. For instance, C/C++ com-

pilers provide short vector data types that can be easily mapped

to hardware vector units. Other languages, like APL [6], Vector

Pascal [4], MatLab/Octave, or FORTRAN, and language extensions

like ArBB [15] provide operations on arrays.

In order to instruct the compiler to vectorize a particular piece

of code, languages can also provide a way to annotate a scalar

program. In C/C++, Intel
®
Cilk

™
Plus [9] and OpenMP 4.0 allow

to place preprocessor directives in front of loops or functions. For

the benchmarks used in the evaluation section of this paper, we

integrated RV into the programming language Impala (see 4.1). The

vectorization annotation is naturally added to the language through

higher-order functions.

https://github.com/cdl-saarland/rv

A Data Layout Transformation for Vectorizing Compilers WPMVP’18 , February 24–28, 2018, Vienna, Austria

struct Parent {

a: Child ,

b: int

};

struct Child {

c: int ,

d: int

};

for i in vectorize(/* ... */) {

let p = Parent {

a: Child { c: 0, d: 1 },

b: i

};

}

(a) Before the first iteration

struct Child {

c: int ,

d: int

};

for i in vectorize(/* ... */) {

let p_a = Child { c: 0, d: 1 };

let p_b = i;

}

(b) After the first iteration

Figure 2: Applying the transformation in a fix point with
the vectorization analysis ensures it is only applied when
necessary. Here, only one layer of a nested structure is split,
because the vectorization analysis is more precise after one
fix point iteration. Uniform and varying expressions are col-
ored in green and orange respectively.

3 ANALYSIS AND TRANSFORMATION
Our analysis and transformation is integrated in RV (see subsec-

tion 2.2). Therefore, our transformation operates on the LLVM

Intermediate Representation (IR), but the description we give here

is valid for any other SSA-based IR.

Our transformation is applied in a fixed-point loop: We first run

the vectorization analysis of RV. Then, we look for stack allocated

structures or array of structures, and split those that have a varying

shape. We repeat those two steps until the transformation has

nothing left to split.

With such a design, the transformation is selective: In the case of

a varying structure containing other structures, the first iteration of

the transformation will only split the parent structure. In the next

iteration, the vectorization analysis will be more precise, because

the members of the parent structure will be split: They will now

have their own shape. Therefore, the transformation will only split

the members of the innermost structure if necessary (see Figure 2).

3.1 Notation
In order to present the transformation in a concise and formal man-

ner, we introduce a simplified version of the LLVM IR in Figure 3.

This IR represents the relevant parts of the LLVM IR for our

setting. In particular, it models LLVM instructions such as load ,
store , alloca, or дetelementptr . A load takes only one pointer

argument and loads the corresponding piece of memory into a reg-

ister. A store takes a value to store and a pointer to store the value

to. An alloca allocates stack memory to hold a value of the given

type and returns a pointer to the new chunk of memory. Note that

this instruction is not to be confused with the homonymous GNU

C library function: Its purpose is to model stack allocated variables.

The дetelementptr instruction performs pointer arithmetic on

the argument with the given indices. The first index is multiplied by

the size of the pointed object and added to the pointer. The meaning

of the next index depends on the type of the pointer. If the pointer

points to a structure, then it represents the index to a structure

member. If the pointer points to an array, then it represents the

index into the array. The following indices are interpreted in the

same way, creating a path inside the type of the memory location.

For instance, if a pointer p has type [struct {int , int } × 2]∗, then the

instructionдetelementptr p indices 0, 1, 0 returns a pointer that
points to the first member of the structure in the second element

of the array pointed by p.
The uses of an instruction I are denoted with U (I): it is a set

containing all instructions that use I as an operand.

3.2 Analysis
The goal of the transformation is to split structures or arrays of

structures allocated on the stack. Before doing so, we must ensure

that the transformation is desirable (the structure is marked as

varying) and valid (the address of the stack object is not used in

incorrect ways). For these reasons, Algorithm 2 inspects every stack

object and returns whether or not the transformation should be

applied: For every varying alloca in the program, the algorithm

checks if the allocated type is a structure or an array of structures,

and if so, analyzes the uses of the alloca to ensure that they can be

transformed (by calling the function AnalyzeUses in Algorithm 1).

For instance, we must prevent the following instruction sequence

from being transformed:

I1 = alloca struct {int , int }∗

I2 = alloca struct {int , int }

I3 = store I2 to I1

In this example, the pointer I2 is stored to the memory location

pointed by I1, which makes precise tracking of instructions writing

to I2 generally impossible.

We also make sure that the users of an alloca to transform

can only be loads, stores, or дetelementptrs. In the case of a

дetelementptr , we check the indices to verify that the transfor-

mation is possible. In particular, we reject the following instruction

sequence:

I1 = alloca struct {int , int }

I2 = дetelementptr I1 indices 5, 0

In this case, I2 points to memory outside of the region allocated

by I1: The дetelementptr offsets the pointer in I1 by 5 times the

size of struct {int , int }.
The users of a дetelementptr have to be analyzed as well if the

pointer arithmetic does not descend into the alloca. To illustrate

this point, consider the program:

I1 = alloca struct {int , int }

I2 = дetelementptr I1 indices 0

I3 = дetelementptr I2 indices 0, 1

WPMVP’18 , February 24–28, 2018, Vienna, Austria A. Pérard-Gayot et al.

I F load I load a value from a memory location

| store I to I store a value to a memory location

| дetelementptr I indices I perform pointer arithmetic

| alloca T allocate an object on the stack

| struct {I } a structure value

| N , N ∈ N an integer constant

| inst I any other instruction

T F int integer type

| struct {T } structure type

| [T × N] , N ∈ N array type

| T∗ pointer type

Figure 3: Program syntax and types for our transformation.

In this small sequence of instructions, I2 is in fact pointing to the

same memory location as I1. We must then also analyze its single

use I3. Since I3 points to the second member of the structure, its

uses do not need to be analyzed.

The program in Algorithm 1 formalizes these constraints.

3.3 Transformation
Once the analysis determines that the transformation is valid, we

split the alloca. This process follows the same principle as the

analysis: We start by creating one alloca per structure member,

then replace the uses of the original alloca. For example, we may

perform the following transformation:

I1 = alloca struct {int , int }

I2 = дetelementptr I1 indices 0, 1

I3 = store 5 to I2

⇒

I1 = alloca int

I2 = alloca int

I3 = store 5 to I2

If the original program contains a load or store to the entire

alloca, we have to replace it by as many loads or stores as there
are structure members, as in the following example:

I1 = alloca struct {int , int }

I2 = load I1
⇒

I1 = alloca int

I2 = alloca int

I3 = load I1

I4 = load I2

I5 = struct {I3, I4}

4 RESULTS
4.1 Benchmarks
In order to evaluate our approach, we implemented two benchmark-

ing programs. The first one is a vectorized version of Bresenham’s

line drawing algorithm, and the second is a vectorized ray-tracing

kernel. These two programs differ in complexity: While Bresen-

ham’s algorithm represents only a few lines of code, the ray-tracing

program is more representative of real-world applications, as it

amounts to approximately 1K lines of code.

Both of these programs are implemented using Impala, a dialect

of Rust. In Impala, vectorization is triggered with the function

vectorize. Impala then orders RV to vectorize the provided piece

of code.

for i in vectorize(vec_width , default_alignment , 0, N) {

/* ... */

}

In this example, the loop counter i is marked by Impala as being

varying. Every variable captured from the inside of the vectorize

block is assumed to be uniform across SIMD lanes, and marked

uniform by Impala. RV then uses this initial information during the

vectorization analysis.

4.1.1 Line Drawing. Bresenham’s line drawing algorithm is an

algorithm to plot lines on a bitmap image. The core of its imple-

mentation is given below:

fn plot_line(line: &Line , plot: fn (i32 , i32) -> ()) -> () {

let dx = (line.x1 - line.x0) as f32;

let dy = (line.y1 - line.y0) as f32;

let de = fabsf(dy / dx);

let ky = if line.y1 > line.y0 { 1 } else { 0 };

let mut e = 0.0f;

let mut y = line.y0;

for x in range(line.x0, line.x1) {

plot(x, y);

e += de;

if e > 0.5f {

y += ky;

e -= 1.0f;

}

}

}

We vectorize it by assigning each SIMD lane a line which differs

from the others only by the y-coordinate of its endpoints.

4.1.2 Ray-tracing. Our ray-tracing benchmark uses a Bounding

Volume Hierarchy (BVH) to compute the intersection between a

ray and a 3D scene. The BVH is a tree containing a bounding box

in each inner node, and list of triangles in the leaves. The children

of a node are always contained in the bounding box of their parent.

The algorithm takes a ray as input and recursively descends into

the tree, culling nodes whose bounding boxes are not intersected by

the ray. In Impala, the ray-box intersection function is the following,

and only consists in floating point arithmetic followed by min/max

pairs:

A Data Layout Transformation for Vectorizing Compilers WPMVP’18 , February 24–28, 2018, Vienna, Austria

Algorithm 1 Analysis for the uses of an instruction.

Inputs:
I : Instruction to analyze

Arr : True iff I is an alloca of array type

O f f : True iff the first дetelementptr index can be non-zero

Output:
True iff I can be transformed

1: function AnalyzeUses(I , Arr , Off)

2: for J ∈ U (I) do
3: switch J

4: case load J1
5: break
6:

7: case store J1 to J2
8: if J1 = I then
9: return False ▷ Pointers cannot escape

10: end if
11: break
12:

13: case дetelementptr J1 indices J2, J3, . . . Jn
14: for k ∈ [2,n] do ▷ Check indices

15: if Jk < N & !(Arr ∧ k = 3) then
16: return False ▷ Non-constant indexing
17: end if
18: if !Off & k = 2 & Jk , 0 then
19: return False ▷ First index must be zero

20: end if
21: end for
22: if Arr then ▷ Analyze uses of дetelementptr
23: if n < 4 then
24: R← AnalyzeUses(J, n = 2, n = 3)

25: end if
26: else
27: if n < 3 then
28: R← AnalyzeUses(J, False , False)
29: end if
30: end if
31: if !R then
32: return False ▷ Uses break constraints

33: end if
34: break
35:

36: default
37: return False ▷ Others instructions

38:

39: end switch
40: end for
41: return True
42: end function

fn @intersect_ray_box(math: Math , ray: Ray , bbox: BBox)

-> (bool , float , float) {

let t0 = vec3_add(vec3_mul(ray.inv_dir , bbox.min), ray.inv_org);

let t1 = vec3_add(vec3_mul(ray.inv_dir , bbox.max), ray.inv_org);

let (tentry , texit) =

(math.fmaxmaxf(math.fminf(t0.x, t1.x), math.fminf(t0.y, t1.y),

math.fminmaxf(t0.z, t1.z, ray.tmin)),

math.fminminf(math.fmaxf(t0.x, t1.x), math.fmaxf(t0.y, t1.y),

math.fmaxminf(t0.z, t1.z, ray.tmax)))

(tentry <= texit , tentry , texit)

}

Algorithm 2 Analysis for a single instruction.

Inputs:
I : Instruction to analyze

S : Map from instruction to vector shape

Output:
True iff I can be transformed

1: function AnalyzeInstruction(I , S)
2: if S (I) , varying then
3: return False ▷ I must be varying

4: end if
5: if I = alloca T then
6: if T = [T1 × N] then ▷ Analyze arrays of structs
7: S← T1
8: Arr← True
9: else
10: S← T

11: Arr← False
12: end if
13: if S = struct {S1, . . . Sn } then
14: return AnalyzeUses(I ,Arr , False)
15: else
16: return False ▷ Only applies to structs
17: end if
18: else
19: return False
20: end if
21: end function

Once the algorithm reaches a leaf of the tree, the triangles con-

tained in it are intersected with the ray, and only the closest in-

tersection is kept. A typical use case for this algorithm is a global

illumination renderer, where many of such queries have to be per-

formed to produce a single image.

The algorithm is vectorized by assigning every SIMD lane a

different ray:

for i in vectorize(vec_width , default_alignment , 0, N) {

let ray = load_ray(i);

let hit = traverse_bvh(bvh , ray);

store_hit(i, hit);

}

Inside the traverse_bvh function, nodes are pushed on the stack

whenever any ray intersects their bounding boxes:

let (mask , tentry , texit) =

intersect_ray_box(math , ray , node.bbox);

if any(mask) {

if any(stack.top().tmin < tentry) {

stack.push(child_id , tentry)

} else {

stack.push_after(child_id , tentry)

}

}

Nodes are pushed in an approximate order on the stack, and we

store their distance along the ray. This approximate sorting makes

finding the closest intersection faster, and the distance can be used

to cull nodes.

WPMVP’18 , February 24–28, 2018, Vienna, Austria A. Pérard-Gayot et al.

Scene With opt. Without opt. Scalar

Sponza 5.79 (×17) 0.34 0.88

Crown 15.33 (×14) 1.08 3.27

San-Miguel 3.13 (×16) 0.19 0.53

Powerplant 6.69 (×15) 0.45 1.38

Table 1: Performance in Mray/s (higher is better) of the ray
tracing algorithmwith vectorization enabled (with andwith-
out our transformation) and disabled (the scalar variant), in
different scenes. The speedups in parentheses are reported
with respect to the version with vectorization enabled with-
out our transformation.

With opt. Without opt. Scalar

32.31 (×2) 15.41 14.63

Table 2: Performance in Mline/s (higher is better) of the
line drawing algorithmwith vectorization enabled (with and
without our transformation) and disabled (the scalar vari-
ant). The speedups in parentheses are reported with respect
to the version with vectorization enabled without our trans-
formation.

4.2 Performance
We compare the performance of our benchmarks in three versions:

Vectorized with our optimization enabled, vectorized with our opti-

mization disabled, and non-vectorized (scalar).

Overall, Table 1 shows that our transformation greatly improves

performance, reaching sometimes up to 17× the speed of the non-

optimized version. Without the transformation, vectorization is

virtually useless, as the resulting code is slower than the non-

vectorized version.

The reason for this huge gap is that our transformation makes

the analyses in RV more precise. In our ray-tracing algorithm, the

traversal stack is represented as an array of structures containing

the distance to the node and its index into the array of nodes. Before

the optimization, the stack is kept as a whole and therefore marked

as varying by RV: The generated vector code then assumes that

the control flow is not uniform, and generates masks and guards.

After the optimization, the stack is split in two: One stack for the

distance, and one for the index. RV marks the former as varying,

but keeps the latter uniform, which in turn makes the traversal

loop uniform. Therefore, no masks or guards are needed, and the

generated code is similar to the hand written code in the Embree

library, a ray tracing library by Intel (see Figure 4). Its performance

is also similar, always within 10% of Embree for the tested scenes.

With the simpler line drawing algorithm (Table 2), the difference

is only a factor of 2 over the vectorized variant. This shows that

our transformation is more beneficial to complex algorithms. In-

deed, smaller programs have simpler control flow, and hence fewer

opportunities to remove redundant masking logic.

5 CONCLUSION
We have described a transformation that operates on an SSA-based

IR. This transformation splits stack-allocated objects in order to

improve existing vectorization analyses.

We proved that without our transformation, automatic vector-

ization fails to generate efficient code for a ray-tracing algorithm.

For this algorithm, vectorization without our transformation is not

a viable option, since the resulting code is slower than the scalar

version. When our transformation is applied, the performance of

the algorithm is within 10% of a hand-vectorized library by Intel.

Because this transformation is selective, it will not affect the

whole program, but only the parts where the transformation is

beneficial. Hence, the programmer can now use structures, arrays

and aggregates without performance penalties.

ACKNOWLEDGMENTS
This work is supported by the Federal Ministry of Education and

Research (BMBF) as part of the Metacca and ProThOS projects as

well as by the Intel Visual Computing Institute (IVCI) and Cluster

of Excellence on Multimodal Computing and Interaction (MMCI)

at Saarland University.

REFERENCES
[1] John R. Allen, Ken Kennedy, Carrie Porterfield, and Joe D. Warren. 1983. Con-

version of Control Dependence to Data Dependence. In Conference Record of the
Tenth Annual ACM Symposium on Principles of Programming Languages, Austin,
Texas, USA, January 1983. 177–189. https://doi.org/10.1145/567067.567085

[2] Randy Allen and Ken Kennedy. 1987. Automatic Translation of Fortran Programs

to Vector Form. ACM Trans. Program. Lang. Syst. 9, 4 (1987), 491–542. https:

//doi.org/10.1145/29873.29875

[3] Randy Allen and Ken Kennedy. 2001. Optimizing Compilers for Modern Architec-
tures: A Dependence-based Approach. Morgan Kaufmann.

[4] W. Paul Cockshott. 2002. Vector Pascal an array language for multimedia code.

In APL. 83–91. https://doi.org/10.1145/602231.602242
[5] Bruno Coutinho, Diogo Sampaio, Fernando Magno Quintão Pereira, and Wag-

ner Meira Jr. 2011. Divergence Analysis and Optimizations. In 2011 International
Conference on Parallel Architectures and Compilation Techniques, PACT 2011, Galve-
ston, TX, USA, October 10-14, 2011. 320–329. https://doi.org/10.1109/PACT.2011.63

[6] Adin D. Falkoff and Kenneth E. Iverson. 1973. The Design of APL. IBM Journal
of Research and Development 17, 5 (1973), 324–334. https://doi.org/10.1147/rd.174.
0324

[7] Paul Feautrier. 1991. Dataflow analysis of array and scalar references. Interna-
tional Journal of Parallel Programming 20, 1 (1991), 23–53. https://doi.org/10.

1007/BF01407931

[8] Michael Haidl, Simon Moll, Lars Klein, Huihui Sun, Sebastian Hack, and Sergei

Gorlatch. 2017. PACXXv2 + RV: An LLVM-based Portable High-Performance

Programming Model. In Proceedings of the FourthWorkshop on the LLVM Compiler
Infrastructure in HPC, LLVM-HPC@SC 2017, Denver, CO, USA, November 13, 2017.
7:1–7:12. https://doi.org/10.1145/3148173.3148185

[9] Intel Corporation. 2013. Intel® Cilk™ Plus Language Extension Specification
(version 1.2 ed.).

[10] Ralf Karrenberg. 2015. Automatic SIMD Vectorization of SSA-based Control Flow
Graphs. Springer. https://doi.org/10.1007/978-3-658-10113-8

[11] Ralf Karrenberg and Sebastian Hack. 2011. Whole-function vectorization. In

Proceedings of the CGO 2011, The 9th International Symposium on Code Generation
and Optimization, Chamonix, France, April 2-6, 2011. 141–150. https://doi.org/10.
1109/CGO.2011.5764682

[12] Ralf Karrenberg and Sebastian Hack. 2012. Improving Performance of OpenCL

on CPUs. In Compiler Construction - 21st International Conference, CC 2012, Held
as Part of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2012, Tallinn, Estonia, March 24 - April 1, 2012. Proceedings. 1–20. https:
//doi.org/10.1007/978-3-642-28652-0_1

[13] Samuel Larsen and Saman P. Amarasinghe. 2000. Exploiting superword level

parallelism with multimedia instruction sets. In Proceedings of the 2000 ACM
SIGPLAN Conference on Programming Language Design and Implementation
(PLDI), Vancouver, Britith Columbia, Canada, June 18-21, 2000. 145–156. https:
//doi.org/10.1145/349299.349320

https://doi.org/10.1145/567067.567085
https://doi.org/10.1145/29873.29875
https://doi.org/10.1145/29873.29875
https://doi.org/10.1145/602231.602242
https://doi.org/10.1109/PACT.2011.63
https://doi.org/10.1147/rd.174.0324
https://doi.org/10.1147/rd.174.0324
https://doi.org/10.1007/BF01407931
https://doi.org/10.1007/BF01407931
https://doi.org/10.1145/3148173.3148185
https://doi.org/10.1007/978-3-658-10113-8
https://doi.org/10.1109/CGO.2011.5764682
https://doi.org/10.1109/CGO.2011.5764682
https://doi.org/10.1007/978-3-642-28652-0_1
https://doi.org/10.1007/978-3-642-28652-0_1
https://doi.org/10.1145/349299.349320
https://doi.org/10.1145/349299.349320

A Data Layout Transformation for Vectorizing Compilers WPMVP’18 , February 24–28, 2018, Vienna, Austria

vmovdqa 160(% rsp), %ymm12

vmovdqa 128(% rsp), %ymm1

vextracti128 $1, %ymm1 , %xmm1

vmovaps 480(% rsp), %ymm5

vaddps %ymm9 , %ymm5 , %ymm9

vfmadd213ps 64(% rsp), %ymm4 , %ymm6

vmovaps 96(% rsp), %ymm2

vfmadd132ps 32(% rsp), %ymm2 , %ymm3

vblendvps %ymm11 , %ymm14 , %ymm0 , %ymm10

vfmadd132ps 192(% rsp), %ymm5 , %ymm0

testb $1, %r15b

je .LBB12_1439

vextracti128 $1, %ymm7 , %xmm2

vpextrq $1, %xmm2 , %rax

vextractf128 $1, %ymm13 , %xmm2

vinsertps $48 , (%rax), %xmm2 , %xmm2

vinsertf128 $1, %xmm2 , %ymm13 , %ymm13

.LBB12_1439:

vmovdqa 672(% rsp), %ymm7

vfmadd213ps 64(% rsp), %ymm4 , %ymm10

vblendvps %ymm11 , %ymm13 , %ymm0 , %ymm2

vmovaps 96(% rsp), %ymm4

vfmadd132ps 32(% rsp), %ymm4 , %ymm2

vmovdqa 128(% rsp), %ymm4

vpacksswb %xmm1 , %xmm4 , %xmm11

vpminsd %ymm0 , %ymm9 , %ymm1

vpmaxsd %ymm9 , %ymm0 , %ymm0

vpminsd %ymm10 , %ymm6 , %ymm4

vpmaxsd %ymm6 , %ymm10 , %ymm5

vpminsd %ymm2 , %ymm3 , %ymm6

vpmaxsd %ymm3 , %ymm2 , %ymm2

vpmaxsd %ymm1 , %ymm4 , %ymm1

vpminsd %ymm5 , %ymm0 , %ymm0

vpmaxsd %ymm6 , %ymm7 , %ymm3

vpminsd %ymm15 , %ymm2 , %ymm2

vpmaxsd %ymm1 , %ymm3 , %ymm9

vpminsd %ymm2 , %ymm0 , %ymm0

vpcmpgtd %ymm0 , %ymm9 , %ymm0

vpxor .LCPI12_60 , %ymm0 , %ymm0

vextracti128 $1, %ymm0 , %xmm1

vpacksswb %xmm1 , %xmm0 , %xmm0

vpand %xmm8 , %xmm0 , %xmm0

vpmovzxwd %xmm0 , %ymm0

vpslld $31 , %ymm0 , %ymm0

vpsrad $31 , %ymm0 , %ymm0

vextracti128 $1, %ymm0 , %xmm1

vmovq %xmm1 , %rax

vpextrq $1, %xmm1 , %rcx

vmovq %xmm0 , %rdx

vpextrq $1, %xmm0 , %rsi

orq %rcx , %rsi

orq %rax , %rdx

xorl %eax , %eax

orq %rsi , %rdx

setne %cl

je .LBB12_1456

(a) Assembly without our transformation

vbroadcastss -192(%r14 ,%rdi ,4), %ymm3

vfmsub213ps %ymm0 , %ymm6 , %ymm3

vbroadcastss -128(%r14 ,%rdi ,4), %ymm4

vfmsub213ps %ymm10 , %ymm1 , %ymm4

vbroadcastss -64(%r14 ,%rdi ,4), %ymm2

vfmsub213ps %ymm8 , %ymm9 , %ymm2

vbroadcastss -160(%r14 ,%rdi ,4), %ymm11

vfmsub213ps %ymm0 , %ymm6 , %ymm11

vbroadcastss -96(%r14 ,%rdi ,4), %ymm12

vfmsub213ps %ymm10 , %ymm1 , %ymm12

vbroadcastss -32(%r14 ,%rdi ,4), %ymm14

vpminsd %ymm11 , %ymm3 , %ymm7

vpmaxsd %ymm3 , %ymm11 , %ymm3

vfmsub213ps %ymm8 , %ymm9 , %ymm14

vpminsd %ymm12 , %ymm4 , %ymm11

vpmaxsd %ymm4 , %ymm12 , %ymm4

vpminsd %ymm14 , %ymm2 , %ymm12

vpmaxsd %ymm2 , %ymm14 , %ymm2

vpmaxsd %ymm7 , %ymm11 , %ymm7

vpminsd %ymm4 , %ymm3 , %ymm4

vpmaxsd %ymm12 , %ymm15 , %ymm3

vpminsd %ymm13 , %ymm2 , %ymm2

vpmaxsd %ymm7 , %ymm3 , %ymm3

vpminsd %ymm2 , %ymm4 , %ymm2

vpcmpgtd %ymm2 , %ymm3 , %ymm2

vpxor .LCPI12_6 , %ymm2 , %ymm2

vptest %ymm2 , %ymm2

je .LBB12_40

(b) Assembly with our transformation

vbroadcastss 64(%r14 ,%rsi ,4), %ymm2

vmovaps 1152(% rsp), %ymm0

vmovaps 1184(% rsp), %ymm3

vmovaps 1216(% rsp), %ymm4

vfmsub213ps %ymm12 , %ymm0 , %ymm2

vbroadcastss 128(%r14 ,%rsi ,4), %ymm5

vfmsub213ps %ymm11 , %ymm3 , %ymm5

vbroadcastss 192(%r14 ,%rsi ,4), %ymm6

vfmsub213ps %ymm13 , %ymm4 , %ymm6

vbroadcastss 96(%r14 ,%rsi ,4), %ymm7

vfmsub213ps %ymm12 , %ymm0 , %ymm7

vbroadcastss 160(%r14 ,%rsi ,4), %ymm8

vfmsub213ps %ymm11 , %ymm3 , %ymm8

vbroadcastss 224(%r14 ,%rsi ,4), %ymm3

vfmsub213ps %ymm13 , %ymm4 , %ymm3

vpminsd %ymm7 , %ymm2 , %ymm0

vpminsd %ymm8 , %ymm5 , %ymm4

vpminsd %ymm3 , %ymm6 , %ymm9

vpmaxsd %ymm4 , %ymm0 , %ymm0

vpmaxsd %ymm9 , %ymm0 , %ymm0

vpmaxsd %ymm7 , %ymm2 , %ymm2

vpmaxsd %ymm8 , %ymm5 , %ymm4

vpmaxsd %ymm3 , %ymm6 , %ymm3

vpminsd %ymm4 , %ymm2 , %ymm2

vpminsd %ymm3 , %ymm2 , %ymm2

vpmaxsd 1248(% rsp), %ymm0 , %ymm3

vpminsd 768(% rsp), %ymm2 , %ymm2

vcmple_oqps %ymm2 , %ymm3 , %ymm2

vtestps %ymm2 , %ymm2

je .LBB83_97

(c) Reference assembly in Embree

Figure 4: Comparison of the assembly generated by LLVM for the ray-box intersection routine of our ray-tracing algorithm.
We show the x86 assembly after vectorization by RV with our optimization disabled (4a) and enabled (4b). We also provide the
assembly generated by LLVM for the ray-box intersection routine of Embree (4c), a manually vectorized ray-tracing library
by Intel. For brevety, we do not reproduce the listing in 4a in its entirety.

[14] Yunsup Lee, Ronny Krashinsky, Vinod Grover, Stephen W. Keckler, and Krste

Asanovic. 2013. Convergence and scalarization for data-parallel architectures. In

Proceedings of the 2013 IEEE/ACM International Symposium on Code Generation
and Optimization, CGO 2013, Shenzhen, China, February 23-27, 2013. 32:1–32:11.
https://doi.org/10.1109/CGO.2013.6494995

[15] Chris J. Newburn, Byoungro So, Zhenying Liu, Michael D. McCool, Anwar M.

Ghuloum, Stefanus Du Toit, Zhi-GangWang, Zhaohui Du, Yongjian Chen, Gansha

Wu, Peng Guo, Zhanglin Liu, and Dan Zhang. 2011. Intel’s Array Building Blocks:

A retargetable, dynamic compiler and embedded language. In Proceedings of the
CGO 2011, The 9th International Symposium on Code Generation and Optimization,
Chamonix, France, April 2-6, 2011. 224–235. https://doi.org/10.1109/CGO.2011.
5764690

[16] Viet Nhu Ngo. 1995. Parallel Loop Transformation Techniques for Vector-based
Multiprocessor Systems. Ph.D. Dissertation. Minneapolis, MN, USA. UMI Order

No. GAX94-33091.

[17] Dorit Nuzman, Sergei Dyshel, Erven Rohou, Ira Rosen, Kevin Williams, David

Yuste, Albert Cohen, and Ayal Zaks. 2011. Vapor SIMD: Auto-vectorize once, run

everywhere. In Proceedings of the CGO 2011, The 9th International Symposium on
Code Generation and Optimization, Chamonix, France, April 2-6, 2011. 151–160.
https://doi.org/10.1109/CGO.2011.5764683

[18] Dorit Nuzman and Richard Henderson. 2006. Multi-platform Auto-vectorization.

In Fourth IEEE/ACM International Symposium on Code Generation and Opti-
mization (CGO 2006), 26-29 March 2006, New York, New York, USA. 281–294.
https://doi.org/10.1109/CGO.2006.25

[19] Dorit Nuzman, Ira Rosen, and Ayal Zaks. 2006. Auto-vectorization of interleaved

data for SIMD. In Proceedings of the ACM SIGPLAN 2006 Conference on Program-
ming Language Design and Implementation, Ottawa, Ontario, Canada, June 11-14,
2006. 132–143. https://doi.org/10.1145/1133981.1133997

[20] Dorit Nuzman and Ayal Zaks. 2008. Outer-loop vectorization: revisited for short

SIMD architectures. In 17th International Conference on Parallel Architecture and
Compilation Techniques, PACT 2008, Toronto, Ontario, Canada, October 25-29, 2008.

https://doi.org/10.1109/CGO.2013.6494995
https://doi.org/10.1109/CGO.2011.5764690
https://doi.org/10.1109/CGO.2011.5764690
https://doi.org/10.1109/CGO.2011.5764683
https://doi.org/10.1109/CGO.2006.25
https://doi.org/10.1145/1133981.1133997

WPMVP’18 , February 24–28, 2018, Vienna, Austria A. Pérard-Gayot et al.

2–11. https://doi.org/10.1145/1454115.1454119

[21] Vasileios Porpodas and Timothy M. Jones. 2015. Throttling Automatic Vectoriza-

tion: When Less is More. In 2015 International Conference on Parallel Architecture
and Compilation, PACT 2015, San Francisco, CA, USA, October 18-21, 2015. 432–444.
https://doi.org/10.1109/PACT.2015.32

[22] Vasileios Porpodas, AlbertoMagni, and TimothyM. Jones. 2015. PSLP: padded SLP

automatic vectorization. In Proceedings of the 13th Annual IEEE/ACM International
Symposium on Code Generation and Optimization, CGO 2015, San Francisco, CA,
USA, February 07 - 11, 2015. 190–201. https://doi.org/10.1109/CGO.2015.7054199

[23] Jaewook Shin, Mary W. Hall, and Jacqueline Chame. 2005. Superword-Level

Parallelism in the Presence of Control Flow. In 3nd IEEE / ACM International
Symposium on Code Generation and Optimization (CGO 2005), 20-23 March 2005,
San Jose, CA, USA. 165–175. https://doi.org/10.1109/CGO.2005.33

[24] Artjoms Sinkarovs and Sven-Bodo Scholz. 2013. Semantics-preserving data

layout transformations for improved vectorisation. In Proceedings of the 2nd ACM

SIGPLAN workshop on Functional high-performance computing, Boston, MA, USA,
FHPC@ICFP 2013, September 25-27, 2013. 59–70. https://doi.org/10.1145/2502323.
2502332

[25] Konrad Trifunovic, Dorit Nuzman, Albert Cohen, Ayal Zaks, and Ira Rosen.

2009. Polyhedral-Model Guided Loop-Nest Auto-Vectorization. In PACT 2009,
Proceedings of the 18th International Conference on Parallel Architectures and
Compilation Techniques, 12-16 September 2009, Raleigh, North Carolina, USA. 327–
337. https://doi.org/10.1109/PACT.2009.18

[26] Shixiong Xu and David Gregg. 2014. Semi-automatic Composition of Data Layout

Transformations for Loop Vectorization. In Network and Parallel Computing -
11th IFIP WG 10.3 International Conference, NPC 2014, Ilan, Taiwan, September
18-20, 2014. Proceedings. 485–496. https://doi.org/10.1007/978-3-662-44917-2_40

https://doi.org/10.1145/1454115.1454119
https://doi.org/10.1109/PACT.2015.32
https://doi.org/10.1109/CGO.2015.7054199
https://doi.org/10.1109/CGO.2005.33
https://doi.org/10.1145/2502323.2502332
https://doi.org/10.1145/2502323.2502332
https://doi.org/10.1109/PACT.2009.18
https://doi.org/10.1007/978-3-662-44917-2_40

	Abstract
	1 Introduction
	2 Related Work
	2.1 Traditional Approaches
	2.2 The Region Vectorizer
	2.3 Support in Programming Languages

	3 Analysis and Transformation
	3.1 Notation
	3.2 Analysis
	3.3 Transformation

	4 Results
	4.1 Benchmarks
	4.2 Performance

	5 Conclusion
	Acknowledgments
	References

