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Abstract

High Performance Computing (HPC) systems are nowadays more and more
heterogeneous. Different processor types can be found on a single node in-
cluding accelerators such as Graphics Processing Units (GPUs). To cope with
the challenge of programming such complex systems, this work presents a
domain-specific approach to automatically generate code tailored to different
processor types. Low-level CUDA and OpenCL code is generated from a
high-level description of an algorithm specified in a Domain-Specific Lan-
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guage (DSL) instead of writing hand-tuned code for GPU accelerators. The
DSL is part of the Heterogeneous Image Processing Acceleration (HIPA<)
framework and was extended in this work to handle grid hierarchies in order
to model different cycle types. Language constructs are introduced to process
and represent data at different resolutions. This allows to describe image pro-
cessing algorithms that work on image pyramids as well as multigrid methods
in the stencil domain. By decoupling the algorithm from its schedule, the
proposed approach allows to generate efficient stencil code implementations.
Our results show that similar performance compared to hand-tuned codes
can be achieved.

Keywords: multigrid, multiresolution, image pyramid, domain-specific
language, stencil codes, code generation, GPU, CUDA, OpenCL

1. Introduction

Mapping algorithms in an efficient way to the target hardware poses
challenges for algorithm designers. This is in particular true for heteroge-
neous systems hosting accelerators like graphics cards. While algorithm
developers have profound knowledge of the application domain, they often
lack detailed insight into the underlying hardware of accelerators in order
to exploit the provided processing power. To tackle this problem, OpenCL!,
a new industry-backed standard Application Programming Interface (API)
that inherits many traits from CUDA, was introduced in order to provide
software portability across heterogeneous systems: correct OpenCL programs
will run on any standard-compliant implementation. OpenCL per se, however,
does not address the problem of performance portability; that is, OpenCL
code optimized for one accelerator device may perform dismally on another,
since performance may significantly depend on low-level details, such as data
layout and iteration space mapping [1].

In this paper, a different approach is taken by decoupling algorithms
from their schedule in a DSL. This allows to map algorithms efficiently
to a target platform. The DSL is part of the HIPA* framework [2] that
provides also a source-to-source compiler to translate not only the high-level
algorithm description into low-level CUDA /OpenCL code, but also to apply
transformations and optimizations on the code. To describe algorithms that
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work on multiple resolutions of the same data, image pyramids are used in
image processing [3] and multigrids for stencil computations [4, 5]. We present
in this work a concise syntax for creating such multiresolution data structures
and for processing the data on different resolutions. Kernels described in
HIPA* remain unchanged, only a schedule for iterating over the grid has to
be specified.

We consider image pyramid construction and High Dynamic Range (HDR)
compression of 2D images as example applications. HDR compression can be
done efficiently in the gradient space. For it, the image has to be transformed
to gradient space and back. While the forward transformation to gradient
space is fast by using simple finite differences, the backward transformation
requires the solution of a Partial Differential Equation (PDE).

Multigrid methods are one of the most efficient numerical methods to
solve large, sparse linear systems arising for example when discretizing elliptic
PDEs. Elliptic PDEs are used to model various physical or technical effects
in many application fields. One of the most popular elliptic PDEs is the
Poisson equation in order to model diffusion processes. In this work we
consider a simple multigrid solver in 2D that employs stencil codes for the
Poisson equation and apply it to image processing. In previous work we
developed a suitable parallel multigrid algorithm and provided a hand-tuned
implementation for this task [6]. Our first description of this multigrid solver
in HIPA* had several drawbacks: images had to be provided for each level and
the (mostly identical) computation had to be described repeatedly for each
level [7]. Here, for concise modeling of multigrid algorithms, we introduce a
suitable representation for multigrid and multiresolution data sets in the DSL
as well as a concise syntax for describing the operations on each multigrid
level and between different multigrid levels.

The focus of this work is on the concise description of algorithms that
operate on different resolutions of the same data:

e We present language constructs in our DSL that allow to describe image
pyramids. Data for pyramids is managed by the framework and only
the data for the finest level has to be provided. Furthermore, we allow
to specify how the pyramid is traversed: this includes typical traversals
for construction of pyramids in image processing as well as the V-cycle
and W-cycle for multigrid stencil computations.

e We evaluate the implementation of image pyramid construction and of
a multigrid application using our image pyramid representation. We



show that the proposed representation improves productivity signifi-
cantly. Furthermore, we show that the description in HIPA* provides
portability across different architectures and allows to achieve com-
petitive performance compared to Halide [8] as well as hand-tuned
implementations.

The paper first introduces related work on DSLs and frameworks for
stencil codes. Then, an overview of the HDR compression application and the
used multigrid solver is given. The HIPA* framework and its extensions used
to model multigrid algorithms in its DSL is introduced thereafter. The paper
concludes with an evaluation of the domain-specific approach for stencil codes
including productivity, portability, and performance aspects.

2. Related Work

In the past, several approaches captured and used knowledge about the
domain of stencil codes and their applications in the form of domain-specific
languages. The idea is to provide abstractions within the language that are
tailored to the domain of stencil-code engineering.

Liszt [9] and Pochoir [10] are stencil compilers for code written in a
simple domain-specific language. Pochoir compiles to C++ with Cilk++
extensions and fits the optimized stencil code into a generic, divide-and-
conquer template. Pochoir pays particular attention to cache obliviousness
on multi-core workstations. However, both languages (Liszt and Pochoir)
provide only limited support for the characteristics of the hardware platform.

The hypre library [11] is a collection of high-performance preconditioners
and solvers for large sparse linear systems of equations on massively parallel
machines. It offers, for example, a stencil-based interface for computations on
structured or block-structured grids and also incorporates different multigrid
solvers. DUNE [12] is a modular and generic C++ library for the solution of
partial differential equations on different kinds of grids. It supports structured
or block-structured grids and a variety of algebraic solvers including multigrid
is provided as external modules. Both libraries, hypre and DUNE, are flexible
and can easily be adapted for stencil applications, but there are neither a
domain-specific syntax nor proper editing and debugging facilities, and the
stencil code has to be optimized by setting configuration options by hand.
There is no specialized syntax for the definition of multigrid solvers. Setting
parameters such as the number of pre- and postsmoothing steps and the cycle



type is done via functions. Custom cycle types or user-defined restriction and
interpolation operators are not supported. All three frameworks provide no
native options for execution on GPUs.

PATUS (Parallel Auto-Tuned Stencils) [13, 14] is a code generation and
auto-tuning framework for stencil computations on shared-memory architec-
tures. The algorithms and stencils are provided by the user and strategies
can be specified that define parallelization and optimization.

The parallel Optimized Sparse Kernel Interface (pOSKI) [15] is a collection
of algorithms for operations involving sparse matrices on uniprocessor and
multi-core machines. It includes auto-tuning at installation- and run-time
and is suitable for stencil computations yielding special sparse matrices.

Physis[16] provides a DSL for stencil computations based on C with
support for GPU accelerators. They hide communication cost by overlapping
boundary exchange with stencil computation.

[17] introduces a small DSL for Jacobi-like iterative methods. Efficient
code is generated for GPU accelerators by using overlapping tiles for multiple
iterations.

Ypnos [18] and Paraiso [19] provide a functional DSL embedded in Haskell
for structured grid computations with support for GPU accelerators. Similarly,
Halide [8] uses a functional representation to describe image processing
algorithms and stencil codes. The programmer then specifies a schedule in
Halide for a pipeline of computations separately. This gives the programmer
the flexibility to reuse the same algorithm description for different target
architectures by specifying target-specific schedules.

In [20] a graphical DSL based on UML activity diagrams is proposed to
model multigrid algorithms for applications in variational imaging.

While these frameworks allow to model stencils and to generate efficient
code, the stencils are limited to a single level in most cases. Halide [8] and the
UML activity diagrams [20] are the only of the aforementioned approaches
that allow users to define custom multigrid algorithms to the best of our
knowledge. In [20], the data-flow between kernels is modeled and multiple
levels can be modeled through a cycle. The implementation of each UML
component is provided by the user and, hence, arbitrary computation can be
expressed. Halide, in contrast, allows to define arbitrary control flow. For
multigrid applications, a loop iterating over the different levels can be used
and the results of each level can be stored to an array.

An alternative approach to code optimization and generation in stencil-
code engineering is the use of the polyhedron model [21]. While a DSL
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captures the required knowledge for optimizations and transformations in
its syntax, the polyhedron model relies on code analysis to extract this
information. There exist many polyhedron-based approaches for stencil codes
and accelerators such as GPUs are well supported (e.g., [22, 23]). However,
the analysis fails often for irregular or non-affine patterns.

3. Application

In order to do imaging in the gradient domain as described, for example,

in [24] we first compute the gradient VI = (j}”) of an image [ : Q — R

y
defined in the rectangular image domain Q C R2.

After that we manipulate the gradient by an attenuating function ®

o B
O(VI) = Il (@) (1)

where the first parameter o determines which gradient magnitudes are left
unchanged, and the second parameter S < 1 is the attenuating factor of the
larger gradients.

The HDR compressed image u : 2 — R is then reconstructed by minimiz-
ing the energy functional

/ |[Vu — ®(VI)||?dS. (2)
Q
A minimizer has to satisfy the Euler-Lagrange equation

V2u = div ®(VI). (3)
Setting f = div®(VI), we have to solve the PDE

Au = f inQ (4a)
u = 0 ondQ (4b)

where we assume Dirichlet boundary conditions. An example for HDR
compression is shown in Figure 1.



(a) Input. (b) Output.

Figure 1: HDR Compression of a 2D X-ray image of size 960 x 960: (a) shows the original
image, while (b) shows the resulting image after HDR compression.

4. Methods
4.1. Algorithm

For discretization of the image we use finite differences on a node-based
grid Q" with mesh size h and number of grid points N. The discrete image
reads I" : Q" — G". G" C R denotes the gray value range and is typically
16-bit for medical images. The image derivatives are computed by simple
forward and backward finite differences.

Equation (4a) and (4b) are also discretized by finite differences, which
leads to a linear system

Ayl = Za%u?: hieQh (5)

JEQ

with system matrix A" € RV*Y unknown vector u" € RV and right hand
side (RHS) vector f* € RN on a discrete grid Q". In stencil notation the
discretized Laplacian A" reads on a uniform grid

] 0 -1 0
Ah:ﬁ -1 4 —1]. (6)
0 -1 0



Algorithm 1: Recursive V-cycle: ugkﬂ) =V <u§lk), Al fh b 1/2).

1 if coarsest level then

2 ‘ solve A"uh = f" exactly or by many smoothing iterations

3 else

4 ﬂgﬂ) =5 (ugf), AR, fh> {pre-smoothing}
5 rh = fh — Ahﬂék) {compute residual}
6 rf = Rl {restrict residual}
7 ef! =V (0, A" 75 vy, 1) {recursion}
8 el = Pell {interpolate error}
9 Ngk) = ﬂgk) +eh {coarse grid correction}
10 ugﬂ'l) =852 <7l§1k),Ah, fh) {post-smoothing?}
11 end

The linear system is solved by a standard multigrid method [25, 26, 27,
28]. One multigrid iteration, here the so-called V-cycle, is summarized in
Algorithm 1.

As multigrid components we choose an w-Jacobi smoother, linear interpo-
lation, and its transpose as restriction.

Note that we know from our previous work [6] that the optimal smoother
with respect to convergence rate for our problem is a red-black Gauss-Seidel
smoother, but currently it cannot be modeled efficiently within the DSL.

4.2. The HIPA* Framework

In order to generate efficient low-level code for our multigrid solver on
GPUs we use the HIPA* framework. Its syntax has been extended to sup-
port upsampling/downsampling of images with different interpolation modes
(nearest neighbor, bilinear, cubic, or Lanczos resampling) in order to coarsen
(restrict) and refine (interpolate) a grid (the image). For multiresolution
data sets, image pyramids are introduced that represent images at different
resolutions with corresponding syntax to describe the data flow between levels
of the pyramid.

4.2.1. Domain-Specific Language (DSL)
The DSL is based on C++ classes that allow to describe kernels operating
on a 2D domain (image): these include a) an Image, representing the data
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storage for image pixels (e. g., represented as integer number or floating point
number), b) an [teration Space, defining a rectangular region of interest in the
output Image. Each pixel within this region is generated by c) a Kernel. To
read from an Image, d) an Accessor is required, defining how and which pixels
are seen within the Kernel. Similar to an [teration Space, the Accessor defines
the pixels that are read by the Kernel; e) a Mask can store the constants
of a stencil that can be read in the Kernel, and f) a Domain represents
the corresponding iteration points for applying the stencil (corresponds to
non-zero elements of the Mask). Since Kernels read neighboring pixels, out-
of-bounds memory accesses occur and a Boundary Condition is required
to define how to handle them: this includes to return a constant value, to
update the index such that either the index is clamped at the border or the
image is virtually repeated or mirrored at the border. Also not to care for
out-of-bounds memory accesses is a valid option—resulting in an undefined
behavior.

To describe a V-cycle in the presented DSL, a kernel for each component
(gradient, smoothing, residual, restrict, interpolate, coarse grid) is required.
Since all components are similar, we show only the implementation of the
Jacobi smoother. Therefore, we define the stencil for the smoother and assign
it to a Mask object of the DSL and define also the corresponding Domain for
the stencil as seen in Listing 1 (lines 2-8).

As needed for the Jacobi smoother, we define an image for the right hand
side (RHS) and an Accessor to it (lines 11-12). The same is done for the
temporary image (TMP). The solution image (SOL) is written and thus uses an
iteration space (lines 15-16). For the smoother we apply Dirichlet boundary
condition (constant with a value of 0) (lines 21-22). With these instances of
DSL classes, an instance of the Jacobi kernel (described later) can be created
and executed (lines 25-26).

1 // stencil for Jacobi

2 const float stencil_jacobi[3][3] = {
3 { 0.00f, 0.25f, 0.00f 1},

4 { 0.25f, 0.00f, 0.25f 1},

5 { 0.00f, 0.25f, 0.00f }

6 };

7 Mask<float> mask(stencil_jacobi);

8 Domain dom(mask) ;

[un
o ©

// image for RHS
Image<float> RHS(width, height);
Accessor<float> acc_rhs (RHS);

e
= W N

// image for SOL



15 Image<float> SOL(width, height);

16 IterationSpace<float> iter_sol(SOL);

17

18 // image for TMP

19 Image<float> TMP(width, height);

20 // reading from TMP with Dirichlet boundary condition

21 BoundaryCondition<float> bound_tmp (TMP, mask, BOUNDARY_CONSTANT, 0);
22 Accessor<float> acc_tmp (bound_tmp) ;

23

24 // instantiate and launch the JacobiKernel operator

25 JacobiKernel JacobiSol(iter_sol, acc_rhs, acc_tmp, mask, dom);
26 JacobiSol.execute();

Listing 1: Instantiate operator for the Jacobi smoother.

Kernels in the framework are implemented as classes that derive from the
framework-provided Kernel base class, featuring a constructor, (private) class
members, and a kernel () method describing the stencil operation. Here,
the stencil operation is described using the reduce () method taking a) the
domain of the stencil, b) the aggregation mode, and c¢) the computation
instructions for a single stencil component with the corresponding image
pixel described as a C++ lambda-function. The result can be stored using
the output () method. An alternative syntax is shown in Listing 3, where
the stencil is manually computed accessing neighboring pixels using relative
offsets. While the second syntax seems to be more concise for this example,
it gets bloated for larger stencils. Using the first notation has also the benefit
that the same kernel description can be used for different stencils. Note that
the presented DSL is based on standard C++ and can be compiled with
any C++ compiler such that incremental porting of applications is possible.
However, compiled with the source-to-source compiler provided by HIPA®,
target code for GPU accelerators is generated.

1 class JacobiKernel : public Kernel<float> {
2 private:

3 Accessor<float> &RHS, &Sol;
4 Mask<float> &mask;

5 Domain &dom;
6

7

8

public:
JacobiKernel (IterationSpace<float> &iter, Accessor<float> &RHS,
Accessor<float> &Sol, Mask<float> &mask, Domain &dom)
9 Kernel (iter),

10 RHS (RHS) ,

11 S0l (Sol),

12 mask (mask) ,

13 dom (dom)

14 {

15 addAccessor (&RHS) ;
16 addAccessor (&Sol);

10



17 }
18

19 void kernel () {

20 output () = Sol() + 0.25f*RHS() + reduce(dom, SUM, [&] () -> float {
21 return mask(dom) * Sol(dom);

22 B

23 ¥

24 };

Listing 2: Kernel description of the Jacobi kernel.

1 void kernel () {

2 output () = Sol() + 0.25f*(RHS() + Sol(-1, 0) + Sol(1, 0) + Sol(0,
-1) + Sol(0, 1));

3 }

Listing 3: Kernel description of the Jacobi kernel using relative memory accesses.

For the restrict and interpolate kernels, an Accessor is defined that provides
(bi)linear interpolation when accessing pixels: no interpolation has to be
described by the programmer, instead only a different Accessor has to be
used, in this case AccessorLF in combination with a boundary condition such
as clamp.

4.2.2. Code Generation

Based on the latest Clang compiler framework?, version 3.4, our source-to-
source compiler uses the Clang front end for C/C++ to parse the input file
and to generate an Abstract Syntax Tree (AST) representation of the source
code. Our back end uses this AST representation to apply transformations
and to generate host API calls and target-specific device code in CUDA or
OpenCL.

Host Code: The parsed AST is transformed using Clang’s Rewriter to
replace the textual representation of individual AST nodes by corresponding
API calls to the runtime library provided by HIPA®. For example, API
calls are added to allocate memory on the GPU accelerator, transfer data
to/from the accelerator, or to start a kernel on the accelerator. This way, any
occurrence of compiler-known classes and instantiations are either removed or
replaced. Kernel code is generated (described in the following) and written
to separate files. These files get included (CUDA) or loaded (OpenCL) such
that the rewritten input source file can be compiled using target compilers
(nvee/g++).

2http://clang.1llvm.org
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Device Code: AST nodes of kernels described in the DSL are translated
into corresponding nodes for CUDA or OpenCL device code. Some AST nodes
are added, for example nodes for global and local index calculations, or nodes
to stage image pixels into local memory, to map multiple iterations to one GPU
thread (unrolling), or to generate different code variants for the same kernel
with tailored boundary handling for different regions of the domain (image).
During traversal of the AST, nodes referring to classes derived from built-in
DSL classes are replaced by corresponding nodes for CUDA and OpenCL, for
example redirecting Accessor reads to memory fetches from global memory,
texture memory, or local memory—depending on the target device. Similarly,
Mask accesses get mapped to constant memory or propagated as constants in
case the operator is described using the convolve () function.

4.2.8. Code Optimization

Optimization is guided by an architecture model for a given GPU archi-
tecture and the information captured by the DSL constructs of a program in
HIPA [2, 29]. The architecture model defines which optimizations are benefi-
cial for a given target architecture and selects the transformations applied
during code generation. The information extracted from the DSL program
includes the size of a stencil, the shape of a stencil, as well as the memory
access pattern within kernels. This information is used to generate tailored
variants for each stencil:

e Memory layout and memory alignment/padding for images.
e Mapping to the memory hierarchy: memory accesses can be mapped

to registers, shared memory, texture memory, constant memory, and
global memory.

e Unrolling of the stencil and propagating of the constants to registers.

e Specialized implementations for boundary handling: up to ten special-
ized variants for the same kernel optimized for different regions of the
image.

e Tiling to improve locality and minimize boundary handling.

e Thread-coarsening [30] to optimize for locality between adjacent pixels.

In addition to the above mentioned optimizations, HIPA® also extracts resource
usage (such as number of registers and shared memory usage) of generated
kernels to fine-tune their tiling to achieve good occupancy.

12



4.8. Efficient Description of Multigrid Algorithms

Describing a multigrid algorithm requires a data storage for holding
multiple images of increasing or decreasing resolution for different levels of
the grid. Between these images, on the same level, and in between different
levels, computational instructions have to be described. Moreover, the data
dependencies for these computations have to be provided, which allows to
derive a schedule directly from the data flow.

Processing a multigrid algorithm is fundamentally similar to operating
on an image pyramid [3], which is a common type of multiresolution data
representation in the domain of image processing. Operating on an image
pyramid includes creating different fine- and coarse-grained images of different
resolution. Furthermore, kernels have to be provided for data exchange
between levels (e.g., downscaling and upscaling) and for operating on images
within the same level. On each level, the kernel computation instructions
are identical, only the input and output images that are bound to kernels
differ, depending on the current recursion level. Therefore, the execution of a
kernel has to be initiated multiple times, each time with the corresponding
images according to the current recursion of the pyramid. Since HIPA*
uses static analysis to generate tailored code variants (e.g., for different
boundary condition properties of an Accessor), calling the same kernel instance
multiple times with different Accessors is not supported at the moment. As
a consequence, the code for describing the pyramid process contains a great
amount of redundancy since each pyramid level has to be described separately.
To overcome this drawback, we introduce in this work an expressive and
flexible way to describe efficiently image pyramids and operations on them,
which can be applied to multigrid algorithms as well.

The HIPA* language support for this is structured into a) Pyramids, a
new data structure for storing multiresolution image data, and b) traverse,
a recursive function for describing data flow between pyramid levels.

4.3.1. Image Pyramids

For creating an image pyramid object, the image of the most fine-grained
level and the depth of the pyramid must be provided as arguments. Pyramids
are based on templates and the template type specifier of the pyramid and
the image argument must match. The pyramid automatically allocates and
manages device memory for the more coarse-grained images of all levels
defined by the depth of the pyramid. The image dimensions, both z and y,
will be consecutively halved per level. While iterating over pyramid levels,
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each image can be addressed by using an integer value describing a relative
index. Querying a pyramid at address '0’ will return an image handle for the
current recursion level. The address "1’ refers to the image on the next (more
coarse-grained) level, whereas address '—1’ refers to the image of the previous
(more fine-grained) level, respectively.

Since the data flow may differ in particular on the most coarse- and
fine-grained levels, methods are provided to query the current recursion level.
Using these control methods, the execution of the recursion body can diverge
depending on the current pyramid level.

uint Pyramid<T>::getDepth ()

uint Pyramid<T>::getLevel ()

bool Pyramid<T>::isTopLevel ()
bool Pyramid<T>::isBottomLevel ()

The getDepth () method returns the depth of the pyramid and getLevel ()
returns the current recursion level. This can be used for execution of different
kernels per level. The isTopLevel() and isBottomLevel () methods provide
a more convenient way to query common corner cases, when operating on the
uppermost and lowermost levels.

4.3.2. Recursive Traversal

The process of operating on an image pyramid can be described using
a recursive algorithm. Therefore, the most suitable language construct for
operating on pyramids is a recursive traversal function, which is sufficient
to describe data dependencies for processing multiresolution data sets while
preserving full flexibility. HIPA® offers two functions to describe pyramid
traversals:

void traverse(std::vector<Pyramid>,
const std::function<void()>)
void traverse ([uint [, const std::function<void()>]])

The first function initiates the recursion by taking a) a vector of pyramids,
which are bound to the traversal process, and b) the recursion body described
as a C++ lambda-function. Only bound pyramids can be addressed by the
traversal lambda-function using a relative index.

The second function defines the recursion within the traversal body. It
can take an additional integer argument for defining the number of recursive
calls that should be called repeatedly as well as an optional lambda-function
for describing the process that should be executed in between these calls.

14



Image<float> in;
Image<float> out;
Pyramid<float> pin(in, 5);
Pyramid<float> pout(out, 5);

traverse ({ &pin, &pout }, [&] {
if (!pin.isTopLevel (D) {
AccessorLF<float> acc_in(pin(-1));
IterationSpace<float> iter_in(pin(0));
Downscale ds(iter_in, acc_in);
ds.execute ();

}

© 0N U e W N

e e
= W N = O

Accessor<float> acc_in(pin(0));
IterationSpace<float> iter_out (pout (0));
Compute c(iter_out, acc_in);
c.execute () ;

=R e e
0w 1 3«

traverse () ;

[CE I
= o ©

if (!'pout.isBottomLevel ()) {
AccessorLF<float> acc_out_cg(pout (1));
Accessor<float> acc_out (pout(0));
Upscale us(iter_out, acc_out, acc_out_cg);
us.execute () ;

NN NN
[SURN'SENCEN N

26 }
27 });

Listing 4: Pyramid traversal: the downscale/upscale kernels create a coarser/finer
representation and the compute kernel processes the data at each level.

Listing 4 shows a simple example for operating on pyramid data structures
using the recursive traversal functions. As needed for the traversal, two image
pyramids are created (lines 3-4) with a depth of 5. Both are bound to a
traverse function call (line 6), together with the lambda-function describing
the actual recursion body (lines 7-26). The body contains the set-up and
execution of three kernels: downscale (lines 8-11), compute (lines 14-17),
and upscale (lines 22-25). The upscale kernel follows the semantics of an
addition assignment operator (+=), operating directly on the result of the
previous kernel. The recursive call (line 19) occurs right after the compute
kernel but could also be placed before without changing the schedule. A
graphical representation of the scheduled control flow is illustrated in Figure 2.

Using both functions together creates the impression that a direct recur-
sive call occurs, but instead a language hook is executed that forwards the
call to the user-defined lambda-function. This pseudo-recursive approach
reduces redundancy (e. g., participating pyramids do not need to be declared
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Figure 2: Control flow for an image pyramid of depth 5 with a single recursive call per
recursion level. An edge represents the execution of a kernel, the edge direction indicates
data flow direction and a node represents the synchronization point (implied by the traverse
call) between kernel(s) executions.

again) and can furthermore be used to implicitly fulfill certain control flow
requirements, like ending the recursion if the termination condition is met.

4.3.3. Syntactic Sugar

While the introduced language support for multiresolution algorithms is
sufficient to describe any algorithm using image pyramids, we want to further
emphasize additional support that eases the description of multiresolution
algorithms by using concise and distinct expressions. The following section
illustrates the expressiveness and flexibility of these techniques.

Repetitive Recursive Calls. One typical task applied to image pyramids is
repeating recursive calls on each recursion level. The number of recursive
calls can either vary, depending on the depth of the current level, or can be
constant in the most common case. Both situations can be expressed using
an optional argument to the traverse() function without the necessity to
apply fundamental changes to the existing DSL code.

Consider the simple recursion in Listing 4 with the corresponding schedule
as shown in Figure 2, which represents the schedule of the V-cycle multigrid.
Using two repetitive recursive calls instead of one results in a schedule corre-
sponding to a W-cycle as shown in Figure 3. To achieve this, it is sufficient
to provide an additional parameter to the traverse () function of Listing 4
(line 19) as indicated in Listing 5 (line 3): the first argument specifies that
two recursive calls should occur per level and the second argument contains
the lambda-function that will be executed in between both calls.
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Figure 3: Control flow for an image pyramid of depth 5 with two recursive calls per
recursion level. An edge represents the execution of a kernel, the edge direction indicates
data flow direction and a node represents the synchronization point (implied by the traverse
call) between kernel(s) executions.
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1 traverse ({ &pin, &pout }, [&] {

2 /* ... downscale ... */

3 traverse (2, [&] { pin.swap(pout); 1});
4 /* ... upscale ... x*/

5 1)

Listing 5: Repetitive recursive calls by defining optional arguments.

Because the traversal function body, for linking the pyramid images, is
constant during the execution, the kernel executed by the second recursive call
will always operate on the input image provided by the kernel of the previous
level. Defining such a schedule will overwrite any results of the first recursive
call. Therefore, to ensure the correctness of the data flow, it is necessary
to swap the underlying data structures of the input and output pyramids
before each consecutive call on the same level. This must be done explicitly
by using the swap() method and cannot be done implicitly by the recursive
call, because if multiple pyramids are bound to the traversal function it is
not clear which of them must be swapped or whether swapping is necessary
at all. The swap() method can only be applied to two pyramids, both of
which need to be constructed with the same template type specifier. Further
properties of this method are reflexivity (swapping a pyramid with itself does
not have any effect) and symmetry (switching the caller object and argument
will result in the same swapping operation).

Describing Local Peaks. To further demonstrate the flexibility of the language
support for image pyramids in HIPA*, we want to show the adaptability of
executions on the local peak. The term local peak denotes the DSL code
executed between refinement and coarsement kernel calls, which can be
described using the optional lambda-function argument of the recursive
traverse function call. The body of the lambda-function can contain DSL
code without any additional limitations, and therefore the schedule on local
peaks can be arbitrarily expanded. Listing 6 illustrates the description of
an additional compute kernel call in between two repetitive recursive calls.
The transformation of the schedule resulting from such a modification is
visualized in Figure 4, which demonstrates the gain of flexibility by providing
the possibility to insert custom DSL code blocks on local peaks.

Nested Traversals. We build up a stack, which stores pyramid traversal
calls whenever a new call is initiated before the predecessing call is finished.
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1 traverse ({ &pin, &pout }, [&] {

2 /* ... downscale ... */

3 traverse (2, [&] {

4 pin.swap (pout);

5 Accessor<float> acc_in(pin(0));

6 IterationSpace<float> iter_out (pout(0));
7 Compute c(iter_out, acc_in);

8 c.execute () ;

9 1)

10 /* ... upscale ... %/

1 });

Listing 6: Describing local peak execution using an expanded lamda-function body
between two repetitive recursive calls.

D -

—)

0006
00 ¢0

Figure 4: Transformation of the control flow on local peaks (green) by using a lambda-

function describing an additional compute kernel execution between two repetitive recursive
calls.

Therefore, such traversal calls can be nested within another traversal function.
That means it is possible to process the traversal of another pyramid at
any level of the currently ongoing traversal. Pyramids bound to the outer
traversal functions can also be accessed by the inner ones and can be used
for computations. In such scenarios, however, every pyramid P is bound
to exactly one traversal t at any step during the traversal process, formally
defined by
Vp 3!t Bind(t, p).

Hereby, the use of a relative index, which defines the address of an image
of a specific pyramid with respect to a certain level, is then only related
to exactly one particular traversal call and its current level. Even though
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Table 1: Comparison of lines of DSL code with and without pyramids for initial image
allocation (Init), different recursion levels (L) and additional control structures (control)
depending on recursion level ¢ and recursion depth n.

Manual Pyramid
(in LoC) (in LoC)

Init(n): 8n + 2 8+2
L(i=1): 34+5 3245
L(i): 34 0
L(i =n): 15 4
control: 0 5

nested traversals are only useful for very special image algorithms such as the
Local Laplacian Filter [31], it further emphasizes the expressiveness of our
approach.

4.8.4. Describing V-Cycles using Image Pyramids

To describe a simple V-cycle, it is only necessary to specify a single
recursion step of the image pyramid, which results in a straight-forward
implementation of Algorithm 1. Table 1 compares the Lines of Code (LoC)
for the manual and pyramid approach, based on initial image allocation and
the number of declared kernels on each level, including the required definitions
for Iteration Spaces and Accessors. It can be seen that the LoC using the
manual approach scales linearly with the number of levels n, while the use of
pyramids results in a constant LoC.

The number of pre- and postsmoothing steps can be varied per level
or depending on other conditions. Since traverse() accepts a parameter
describing the number of recursive calls, switching to a W-cycle is a straight-
forward task. As the number of recursive calls does not have to be constant
on each recursion level, custom cycle types are easy to describe.

LoC(n) = Init(n) + i L(4) 4 control (7)

5. Evaluation and Discussion

In this section, we evaluate the construction of image pyramids and the pre-
sented HDR compression application using the proposed language extension.
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Table 2: Pyramid construction in Halide and HIPA*® for an image of 4096 x 4096 pixels
using 11 levels.

kernel Tesla Tesla Quadro

invocations K20 C2050 FX 5800

Halide! 3 5.10 ms 12.74ms n/a
Halidet 1 1.24ms 3.45ms n/a
HIPA=c 33 1.16 ms 2.42ms 12.99 ms

t Using the same schedule as the HIPAS® implementation.
t Using the optimized schedule.

The implementations are compared with a corresponding implementation in
Halide and a hand-tuned OpenCL implementation. We evaluate the perfor-
mance of the generated code on three GPU architectures from NVIDIA, using
the Tesla K20, the Tesla C2050, and the Quadro FX 5800 GPUs.

5.1. Gaussian Laplacian Pyramid Construction

To evaluate the performance for constructing multigrid representations,
we implement the multiresolution representation of [32] and compare the
implementation against the corresponding implementation in Halide. The
multiresolution representation of [32]| creates a pyramid of Gaussian and
Laplacian images®.

A user-defined kernel in HIPA* will be translated to a corresponding
compute kernel and result in a kernel invocation for each level of the grid.
Each kernel invocation reads its input data and stores its output back to
memory. In contrast, computations in Halide are pure functions that define
the value of pixels. Whether a computation in Halide is translated to a
compute kernel depends on the schedule specified by the programmer.

Considering an input image of 4096 x 4096 pixels, we will get images of 11
different resolutions. To create the pyramid representation and reconstruct the
original image requires 33 kernel invocations in HIPA*: during construction
of the pyramid, one kernel is required for computing the Gaussian image and
one for the Laplacian image; the reconstruction requires a single kernel only.
Table 2 shows the total execution time and number of kernel invocations for

3The local Laplacian filter implementation in [8] uses a similar multiresolution represen-
tation and is available online.
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Halide and HIPAc. We use NVIDIA’s profiler nuprof to measure the kernel
execution time and report the minimum of 10 runs. Since Halide relies on
LLVM’s back end to generate code for NVIDIA GPUs, they do not support
code generation for the Quadro FX 5800*. We list two schedules in Halide:
the first schedule tells Halide to precompute the entire required region of each
computation before the data is consumed by subsequent computations (using
the root schedule). This corresponds to the schedule imposed by HIPA* and
results in 3 kernel invocations (each kernel computes all levels of the pyramid).
The second schedule optimizes for locality and generates just a single kernel
for pyramid construction and reconstruction of the original image. It can
be seen that the schedule using a single kernel is much faster compared to
the schedule using multiple kernels in Halide. The total execution time in
HIPA®¢ is even faster compared to the optimized schedule in Halide although
no kernels are fused in HIPA®.

Note that the optimized Halide implementation stores neither the Gaussian
pyramid nor the Laplacian pyramid. If this is desired, the execution time
would increase correspondingly.

To describe the algorithm in HIPA®, exactly 26 LoC are necessary regard-
less of the pyramid’s depth n. Considering Equation (7), this sum consists of
the following components:

LoC(n) = 7 (Init) + 15 (> L) + 4 (control)

The description of the execution on each pyramid level is identical. Therefore,
only one single level with 15 LoC needs to be taken into account for the
second summand. Including the LoC for describing the compute kernels, the
complete code base for this algorithm written in HIPA“ results in 31 LoC—the
same size is necessary to express the algorithm in Halide®.

The Halide implementation builds up an array of function objects for each
level. As the computational steps on each level are the same, functions can be
defined either by iterating over pyramid levels using for-loops or by utilizing
a recursive function. For more complex structures like W-cycles, pyramids
are much more difficult to construct using the iterative approach. Therefore,
it appears more natural to describe image pyramids in a recursive manner.
Halide however, does not distinguish between computational steps and data

4LLVM’s PTX back end supports only GPUs with compute capability greater than 2.0
Swithout considering the LoC for providing an efficient schedule
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Table 3: Theoretical peak and the achievable (memcpy) memory bandwidth in GB/s for
Quadro FX 5800, Tesla C2050, and Tesla K20 GPUs.

Tesla Tesla Quadro

K20 C2050 FX 5800

Peak 208 GB/s 144GB/s 102GB/s
Memcpy 140* GB/s 1027 GB/s 71.4GB/s
Percentage 67.3* % 70.8" % 69.7 %

t Error-Correcting Code (ECC) memory turned on, 118 GB/s with ECC turned off
(82.1 % of peak bandwidth).
#ECC memory turned on, 159 GB/s with ECC turned off (76.4 % of peak bandwidth).

storage. Both are represented by functions. Since data storage is bound to
functions, the computational steps within functions cannot be reused. Thus,

many temporary functions need to be created to achieve a W-cycle with
Halide.

5.2. HDR Compression

Since it is known that stencil codes are usually bandwidth limited we list
the theoretical peak and the achievable memory bandwidth of all GPUs in
Table 3. In order to estimate the quality of the generated code we consider
one smoothing step on the finest level as example. Here, we have to load
two values from main memory (from RHS and SOL) and to store one value
(TMP), if we assume that all neighboring memory accesses for the stencil
are in cache. This means for single precision accuracy we have to transfer
4 -3 = 12bytes per pixel. On the Tesla C2050 with achievable memory
bandwidth of b = 102 GB/s and for problem size N = 2048 x 2048 we thus
estimate % 1000 = 0.5 ms for the smoother. This matches quite well to the
measured runtime of 0.53 ms (and 0.59 ms) for the hand-tuned (and generated)
OpenCL implementation of the smoother as seen in Table 4. The hand-tuned
OpenCL implementation of the multigrid solver [6] using a red-black Gauss-
Seidel (RBGS) smoother includes a splitting of red and black points, kernel
fusion (e.g., for residual computation and restriction) and spatial blocking
techniques to reduce the amount of required memory transfers. These are the
main reasons why it is faster than the automatically generated code. Since
the manual OpenCL implementation merges multiple kernels (e. g., smooth,
residual, and restrict) into a single kernel, only one runtime is listed in Table 4
for kernels merged in the hand-tuned implementation.
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Table 5: Execution times in ms for the smoother on the Quadro FX 5800, Tesla C2050, and
Tesla K20 for an image of size 2048 x 2048 pixels. Shown is the hand-tuned OpenCL (with
RBGS/Jacobi smoother) as well as the generated CUDA and OpenCL implementations
(Jacobi smoother).

Tesla K20 Tesla C2050 Quadro FX 5800

Manual RBGS 0.35 0.53 1.33
A Jacobi 0.40 0.69 1.74
HIPAC OpenCL 0.40 0.59 1.27
CUDA 0.40 0.77 0.93

Furthermore, in Table 4 the execution times for all other steps of one
V-cycle (see Algorithm 1) are found. The V-cycle has six levels and for
smoothing (pre and post) two iterations are executed on each level. It can be
seen that most of the execution time is spent in the smoother kernel on the
finest level and that for very coarse levels the generated CUDA and OpenCL
codes become inefficient because GPU kernels working only on a small amount
of data achieve lower memory bandwidth.

Since the manual implementation in [6] uses an RBGS smoother, we imple-
mented and auto-tuned also the Jacobi smoother to assess the performance of
the generated code. Table 5 lists the runtime for the hand-tuned RBGS and
Jacobi smoother as well as of the generated implementations for the Jacobi
smoother for the finest level. It can be seen that the RBGS smoother is the
fastest, but it can be also seen that the generated OpenCL implementations
are faster compared to the hand-tuned OpenCL implementations. The auto-
matically generated code is even faster as the hand-tuned implementation on
the Quadro FX 5800. This can be attributed to the fact that the automatically
generated code here uses texture memory and the manual implementation
does not make use of texture memory.

5.8. Discussion

While the final execution time of an application is for most evaluations
the only criteria, we consider here multiple criteria: productivity, portability,
and performance. Achieving high performance comes often at the cost of low
productivity and the loss of portability (e.g., [1|] showed that performance
cannot be preserved simply by using OpenCL to target different GPUs
accelerators). We believe that using a domain-specific approach, competitive
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performance can be achieved without making concessions with regard to
productivity and portability.

Productivity. Writing code that maps efficiently to a target platform requires
profound insights into the target hardware architecture. However, HPC users
come often from other disciplines like biology, physics, or medicine. These
users do not want to care about low-level programming and architecture
details in order to map algorithms to a target platform. Instead, they only
want to give a high-level description of the used algorithm, which can be
written in HIPA*. For example, the stencil codes for this paper were written
in less than half a day using the HIPA® framework, while the hand-tuned
optimizations done by a domain expert took several weeks after a basic version
in OpenCL was available. Similarly, the LoC that have to be written for
a kernel in the framework is moderate (about 15 lines for a kernel class, of
which 3 lines describe the algorithm). From this description, about 500 lines of
CUDA /OpenCL (including ten different code variants for boundary handling)
are generated. Note that the hand-tuned and blocked OpenCL implementation
consumes almost 1200 LoC only for the kernels executed on the GPU.

Portability. Computationally intensive parts that are accelerated on special
hardware such as graphics cards are typically written in a special language such
as CUDA or OpenCL. Moving to a different accelerator may require, hence, to
rewrite accelerated parts in another language. In contrast, using a high-level
description with automatic code generations provides portability and allows to
use the same algorithm description to target different accelerators. Even worse,
running a program written and optimized for one given target architecture
on a different platform comes often along with a performance penalty. That
is, such codes are often not (performance) portable. To solve this dilemma,
HIPA® provides support for different target languages and target architectures:
CUDA, OpenCL, as well as Renderscript [33] (the parallel programming model
of Android®). Depending on the target platform (e. g., Tesla K20, Tesla C2050,
or Quadro FX 5800), different code variants are generated (employing target-
tailored optimizations, kernel configurations according to available resources,
etc.). All these implementations are generated from the same high-level
description. New GPU accelerators can be easily supported by providing an
architecture model description. Only emerging architectures programmed in

Shttp://developer.android.com/guide/topics/renderscript/compute.html
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a different language require a new back end.

Performance. Competitive performance can be achieved using domain-specific
code generators. In [2, 30|, we showed that the code generated by HIPA«
has competitive performance for local operators compared to hand-written
CUDA codes in the Open Source Computer Vision (OpenCV) library or in
the NVIDIA Performance Primitives (NPP) library. In most cases, our code
is even faster. Our first results for stencil codes show also that we achieve
similar performance as the hand-tuned implementation. One can expect
the same performance in case of code generation, if all of the performance
optimization techniques from the hand-tuned code are applied.

5.4. Future Work

While we have shown that optimized code can be generated for single
kernels, it is essential to optimize from an application perspective in order to
capitalize GPU accelerators best. This is in particular true for a sequence of
memory bound kernels, where the fusion of two kernels saves global memory
stores/reads and results in significantly faster execution (up to 2x). All
required information for kernel fusion is available in the DSL description:
execution constraints (iteration space) and memory accesses within a kernel.
For a sequence of kernels, the DSL syntax can be extended to describe
pipelining (e.g., the kernels within one V-cycle level) such that the same
optimizations can be applied as for hand-tuned implementations.

Going a step further, the whole V-cycle can be described even more
declarative. This delegates decisions such as the choice of the smoother (e.g.,
Jacobi vs. Gauss-Seidel) or the multigrid variant (e.g., V-cycle vs. W-cycle)
to the framework depending on target platform properties such as memory
bandwidth to FLOPS ratio.

Since the DSL decouples the algorithm from its schedule, code can be
generated tailored to target platforms that span multiple nodes that can
feature heterogeneous components: the domain can be decomposed such that
sub-domains are mapped to and executed by different types of processing
elements (CPU, GPU, Intel MIC, etc.). This is possible since no target-
specific code is written in the DSL. Already now, the source-to-source
compiler generates different code variants for efficient boundary handling that
are selected /executed depending on the currently processed image region.
This can be extended to not only support different code variants, but also
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different target languages. The target platform description can be provided
separately, for instance, to the compiler in the form of a configuration file.

6. Conclusions

We have shown that automatic code generation is a useful tool to increase
productivity for HPC applications. The performance of the generated code
is on a par with the performance of state-of-the-art stencil frameworks as
well as hand-optimized implementations. By introducing language constructs
in the DSL to represent data at different resolution, we have shown that
multiresolution algorithms can be described in a concise way. In the next
years we want to establish these techniques in order to generate code also for
large distributed memory parallel HPC clusters.

The presented domain-specific language and source-to-source compiler
have been implemented in the HIPA framework, which is available as open-
source under http://hipacc-lang.org.
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