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What?

• Goal: Create photorealistic images

• Applications

• Movies and games

• Design and architecture

• Visualization and simulation

• Optimization, inverse rendering

• AI and machine learning
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Who?

• Instructors

• Philipp Slusallek

• http://graphics.cg.uni-saarland.de/slusallek/

• Karol Myszkowski 

• http://www.mpi-inf.mpg.de/~karol/

• Gurprit Singh 

• http://people.mpi-inf.mpg.de/~gsingh/

• Teaching Assistant

• Pascal Grittmann

• https://graphics.cg.uni-saarland.de/people/grittmann.html

• Tutor

• NN
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Administrative information

• Type

• Advanced lecture

• 9 credit points

• Prerequisites

• Interest in math, physics

• Basic programming experience in C++

• Core lecture “Computer Graphics” recommended but not required

• Web-page: https://graphics.cg.uni-saarland.de/courses/ris-2024/

• MS Teams (Join via link on the webpage)

• Announcements, Q&A, …

• Assignments posted and submitted
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Grading

• Exam admission requires

• 50% of the total points across all assignments

• 30% of the maximum points in every assignment

• Final grade

• Assignments: 50%

• Final exam: 50%
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Assignments

• Irregular rhythm

• Sometimes 1 week, sometimes 2

• Type

• A few theoretical assignments

• Mostly practical ones

• Teamwork

• Can be done in groups of two

• Make sure you understand everything your partner worked on!

• Published, handed-in, and graded via MS Teams
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Reading materials

• Pharr, Jakob, and Humphreys. Physically based rendering: From theory to implementation. 

Morgan Kaufmann, 2016.

• Free e-book: http://www.pbr-book.org/

• More listed on the website
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Applications
Where are the things you will learn here used?
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Movies: Visual Effects (VFX)
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Game of Thrones

Avatar: The Way of Water

© 20th Century Studios

© HBO



Movies: Animated Films
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The Lion King (2019)

© Disney

The Sea Beast

© Netflix



Video Games
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Cyberpunk 2077

© CD Projekt RED

Valheim

© Iron Gate Studios



Simulation
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© Thomas Angus / ICL



Design and Engineering
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© MIT

© IES

© Autodesk



Product Visualization and Advertisement
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© IKEA

© Nissan



Architecture
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© Pixelcraft Work



Optimization and Inverse Rendering
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© Schwartzburg et al. 2014



Artificial Intelligence
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Course overview
What will you learn?
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Course Overview

• Core concepts

• Rendering equation

• Radiosity

• Probability theory and Monte Carlo integration

• BRDFs and path tracing

• Advanced sampling

• Bidirectional and adaptive algorithms

• Bidirectional methods

• Markov chain Monte Carlo 

• Path guiding
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• Advanced effects

• Volume rendering

• Radar / Spectral

• Perception and imaging

• HDR and tone mapping

• Perception and modern display technology

• Machine learning

• Denoising

• Differentiable rendering



Rendering Equation
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𝐿𝑜(𝑥, 𝜔𝑜) = 𝐿𝑒(𝑥, 𝜔𝑜) + න
Ω

𝐿𝑖 𝑥, 𝜔𝑖 𝑓𝑟 (𝜔𝑜, 𝑥, 𝜔𝑖)cos 𝜃𝑖 𝑑𝜔𝑖

Outgoing light Emitted light

Incident light
(recursively given by the same equation)

BSDF: Material propertiesIntegral over all directions
(computes reflected light)

Projection



Monte Carlo Integration and Path Tracing
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න
𝑋

𝑓 𝑥 𝑑𝑥 ≈
1

𝑛


𝑖=1

𝑛
𝑓 𝑥𝑖
𝑝 𝑥𝑖



Advanced Sampling
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Bidirectional Methods

Realistic Image Synthesis 2024 - Lecture 1: Introduction 24



Adaptive / Learned Sampling
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Initial training samples Guided samples



Volume Rendering
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HDR and Tone Mapping
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LDR screen

“HDR” screen

Luminance



Denoising
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Denoised image

Noisy image and features

Denoiser



Differentiable Rendering
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© Jakob et al. (https://mitsuba.readthedocs.io/)

https://mitsuba.readthedocs.io/


Beyond this course
How and where can you apply what you will learn?
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Reflection & Refraction

• Visualization of a car headlight

• It reflects and refracts light almost entirely from the environment. Up to 50 rays per path are needed to 

render this image faithfully (800k triangles).
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Instant Global Illumination

• Real-time simulation of indirect lighting (“many-light method”)
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Real-Time Photon Mapping

• Real-time performance with procedural textures and density estimation. Interleaved sampling 

allows to reduce computation by a factor of 10.
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Photon Mapping

• Car headlight used as a light source

Photons are emitted and traced until they hit a wall. Density estimation is used to reconstruct the illumination. The 

results run at 3 FPS with 250k photons on a cluster of 25 cores (in 2004). Visualization without running the 

simulation achieves even 11 FPS (lower center) and compare well to a real photograph (lower right).
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Light Transport Simulation

• Volkswagen’s large Corporate Visualization Center in Wolfsburg using using ray tracing 

technology developed in Saarbrücken (Spin-off “inTrace”).
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Massive Models

• The original CAD model of a Boeing 777 consisting of 365 million polygons (30 GB). Ray tracing 

was the first method to allow real-time visualization of such models.
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Massive Models

• Visualization of large outdoor scenes (300x300m2) with 365k plants and several billion triangles.
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Massive Models

• Much larger outdoor scene (80x80 km²) with realistic lighting and full vegetation (90*1012 triangles)
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High-Performance Simulation

• Advanced rendering techniques in games
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Physically-Based Image Synthesis
with Real-Time Ray Tracing



Custom Ray Tracing Processor [Siggraph’05]



AnyDSL Compiler Framework

Developer

Computer
Vision

DSL

AnyDSL Compiler Framework (Thorin) 

Physics
DSL

…
Ray 

Tracing
DSL

Various Backends (via LLVM)

Parallel 
Runtime

DSL

Impala Language & Unified Program Representation

Layered DSLs

CPUs GPUs FPGAs Accels



Importance Caching

• Iliyan Georgiev, et al. [Eurographics 2012]

Uniform

Reference

Importance caching



Relative efficiencyBidirectional path tracing (BDPT) Progressive photon mapping (PM)Result

Monte-Carlo vs Density Estimation

• Vertex Connection & Merging, Ilijan Georgiev [SiggraphAsia´12]

• Formulating Density Estimation algorithms as a Monte-Carlo (MC) techniques

Same time (1 minute)



A Quick Glance at (Some of) Our Current Research

• Goal: General, robust, and efficient rendering algorithms

• “One algorithm to render them all”

• Methodology: Adapt the algorithm to the scene based on statistics from initial samples

• Learn better sample distributions

• Optimize parameter values and sample counts

• Adapt weighting functions and combinations
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Motivation
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Performance Accuracy

© Ronan Bekerman



Adapting Parameters and Sample Counts
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Grittmann et al. – Efficiency-aware multiple importance sampling
SIGGRAPH 2022



Lightweight Bidirectional Methods
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Grittmann et al. – Efficient caustic rendering with lightweight photon mapping 
EGSR 2018



What Should Path Guiding Learn?
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Rath et al. – Variance-aware path guiding. SIGGRAPH 2020



Path Termination and Splitting
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Rath et al. – EARS: Efficiency-aware Russian roulette and splitting
SIGGRAPH 2022



Optimal MIS
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Kondapaneni et al. – Optimal multiple importance sampling
SIGGRAPH 2019



Fixing MIS for Bidirectional Methods
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Grittmann et al. – Variance-aware multiple importance sampling
SIGGRAPH Asia 2019



Fixing MIS for Bidirectional Methods – Part II

Realistic Image Synthesis 2024 - Lecture 1: Introduction 53

Grittmann et al. – Correlation-aware multiple importance sampling
Eurographics 2021



Identifying Guiding Targets not on Surfaces
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Rath et al. – Focal Path Guiding
Siggraph 2023



Learning Compact Scene Representations
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Weier, et al. – Rendering with mixed geometric and neural representations.
Siggraph 2023 + 2024



Other Research From Saarbrücken

• Some more examples from my research group
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DFKI-ASR: Agents and Simulated Reality

AI Platforms &

HPC

Guaranteed & 

Explainable

AI

Digital 

Reality

How can synthetic data from 

parametric models and 

simulations be used for 

training, validating, and 

certifying AI systems?

How can AI-systems be realized technically

in a reliable and efficient way?

How to design AI systems 

that can provide guarantees 

and that humans can 

understand and trust?

Trusted

AI



Digital Reality

• Training and Validation in Reality

• E.g. driving millions of miles to gather data

• Difficult, costly, and non-scalable

• Even millions of miles does not get you a reliable AI system

• Issue of long-tail distributions (critical scenarios)

Reality

Car



Digital Reality

• Training and Validation in the Digital Reality

• Arbitrarily scalable (given the right platform)

• But: Where to get the models and the training data from?

Reality
Digital
Reality

CarCar



Digital Reality: AI to Certify AI
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Digital Reality: AI to Certify AI
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Digital Reality: AI to Certify AI
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Radar Simulation
Ours Method: 33 seconds

(Physical Optics + Monte Carlo)

EM.Illumina: 13.4 hours
(Physical Optics + Finite Elements)

Bridging the gap between radar simulation & modern computer graphics
Our resulting method is over 1,000x faster than existing commercial software, while still achieving better accuracy 



Autonomous Driving: Training using Synthetic Sensor Data 

and Realistic Models (TÜV, VDA, ZF, Conti, …)



Motion Modeling and Synthesis

Gosh et al – Using action descriptions to drive motion synthesis via learned models
Eurographics 2023



Collaborative Robotics and  Simulated Reality 

(VW, Airbus, …)



Models of the World

• Long history in motion research (>50 years)

• E.g. Gunnar Johansson's Point Light Walkers (1974)

• Humans can easily identify more than what we see

• Identify the person with high probability

• Perceive properties like gender, age, weight, mood, ...

• Based on minimal information

• Can we teach machines the same?

• Currently, only bottom-up analysis

• Neuroscience: Humans strongly perceive also top-down



Models & AI: 
Relationship Between Humans and AI

Reality
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Models & AI: 
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Models & AI: 
Relationship Between Humans and AI
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Models & AI: 
Relationship Between Humans and AI

Reality

Human Machine

AI Perceived Reality

Human Perceived Reality

H-WorldModel M-WorldModel

Problem Domain
(entirely part of reality)

Communication

about H- vs M-Model !!

Perception &

Interaction

Model Alignment &

Explainable AI

Physical Reality



Neuro-Explicit AI Models (1)

• Need to move from ChatGPT to ActGPT

• Not just words (or pixels) but modeling the physical world

• 3D structures, motion, masses & forces, illumination, surface properties, …

• Need vectors, representing these properties and their relationships/context

• Neuro-explicit AI models

• We already know how the world works (physics, chemistry, …) – no need to re-learn

• Use explicit models as the core (differential equations, simulations, logic models, …)

• Use neural models to learn and model the difference to the real world

• Key Role for Trusted AI

• Need for guarantees about the behavior of physical/embedded AI systems

• ChatGT hallucinating text is already really bad

• But a hallucinating robot can (literally) wreak havoc



CERTAIN: Trusted AI should give Guarantees for…

75

Transparency 
and 

Explainability

Fairness and 
Impartiality

Functionality
Robustness 

and Reliability

Safety, 
Security, 
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Responsibility 
and 
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Guarantees for Trusted AI

76

Ethics

Standards

Data

• Intrinsic 

Correctness

• Deductive 

Arguments & 

Proofs

• (Physical) Laws,  

Rules & Constraints

By 

Design

By 

Tools

By 

Insight

By 

Interaction

• Modelling and 

Simulating the Real 

World

• Systematic Testing 

with Synthetic Data

• Monitoring, Auditing

• Explanations, 

Reasons

• Causality

• Transparency, 

Accountability, 

Visualization

• Human Experience, 

Influence, Control

• Reinforcement 

Learning from Human 

Feedback (RLHF)

• Useable Trust,

Trust Calibration

Neuro-explicit AI Models



Ultimate Goal: Can we Teach Computers to “Understand” and 
Simulate the World Around Us?
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